A dataset provided by the European Space Agency

Name RO-C-MIDAS-5-PRL-TO-EXT3
Mission INTERNATIONAL-ROSETTA-MISSION
URL https://archives.esac.esa.int/psa/ftp//INTERNATIONAL-ROSETTA-MISSION/MIDAS/RO-C-MIDAS-5-PRL-TO-EXT3-V2.0
DOI https://doi.org/10.5270/esa-psqz7ro
Author European Space Agency
Abstract The Micro-Imaging Dust Analysis System (MIDAS) is an instrument on the ROSETTA Orbiter that will provide 3D images and statistical parameters of pristine cometary particles, collected in the vicinity of comet 67P/Churyumov-Gerasimenko. This data set includes all images with identified dust particles, that have been collected in the PRELANDING to EXTENDED 3 mission phases. The identified particles are listed in a dedicated catalogue, which is implemented as a CSV table located in the /DATA directory (MID_PARTICLE_TABLE.TAB). Additional information can be found in the ROSETTA-MIDAS Particle Catalogue Document (MID_PARTICLE_CATALOG.PDF). Current dataset superceds V1.0 (RO-C-MIDAS-5-PRL-TO-EXT3-V1.0) dataset after fixing target numbers in browse images and particle catalogue.
Description This dataset includes MIDAS images from the ROSETTA Prelanding Phase up to and including the Extended Phase 3. The current release is based on the results of the Comet Science Reviews held in Feb 2016, Oct 2017 and Oct 2018 and contains the updates defined in the MIDAS Enhanced Archive Data Delivery contract. Current dataset superceds V1.0 (RO-C-MIDAS-5-PRL-TO-EXT3-V1.0) dataset after fixing target numbers in browse images and particle catalogue. The following images can be found in the dataset (for a given image, the name of the respective label file is composed of the file path associated with the preceding medium term planning period MTPxxx and the image identifier listed in the second column): ---------------------------------------------------------------------Scenario DAQ (YYDDDhhmm) Target Tip ImgSize StepSize D MM (D = main scan direction, MM = measurement mode) ---------------------------------------------------------------------MTP001 /DATA/IMG/IMG_1408606_1409700__ZS.LBL ---------------------------------------------------------------------STP001 001 140860813-140860828 1 DAQ 16 32x 32 1000x 1000 X CON 002 140860834-140860849 1 DAQ 16 32x 32 1000x 1000 Y CON 003 140871858-140871901 1 DAQ 1 256x256 24x 24 X DYN 004 140872204-140872207 1 DAQ 1 256x256 24x 24 X DYN 005 140900830-140900830 33 DAQ 6 160x192 55x 55 X DYN 006 140902057-140910240 33 DAQ 6 160x192 55x 55 X DYN 007 140940721-140941409 2 CAL 6 256x256 10x 10 X DYN 008 140950545-140951334 3 CAL 6 256x256 15x 15 X DYN 009 140960545-140961224 4 CAL 6 192x192 10x 10 X DYN ---------------------------------------------------------------------MTP002 /DATA/IMG/IMG_1409700_1409716__ZS.LBL ---------------------------------------------------------------------STP002 001 140970445-140971009 9 DAQ 6 128x128 41x 41 X DYN 003 140971406-140971514 9 DAQ 6 128x128 8x 8 X DYN ---------------------------------------------------------------------MTP003 /DATA/IMG/IMG_1413214_1415411__ZS.LBL ---------------------------------------------------------------------STP003 001 141321658-141321658 3 CAL 6 256x256 15x 15 X DYN 002 141330309-141331039 3 CAL 6 256x256 15x 15 Y DYN 003 141332108-141332108 9 DAQ 7 288x288 41x 41 X DYN 004 141341111-141341204 9 DAQ 7 128x128 8x 8 X DYN 005 141341648-141350446 10 DAQ 7 288x288 41x 41 X DYN 006 141350659-141350752 10 DAQ 7 128x128 8x 8 X DYN 007 141351645-141360446 11 DAQ 7 288x288 41x 41 X DYN 008 141360655-141360747 11 DAQ 7 128x128 8x 8 X DYN 009 141361511-141361511 12 DAQ 7 288x288 41x 41 X DYN 010 141370651-141370743 12 DAQ 7 128x128 8x 8 X DYN 011 141371636-141380437 13 DAQ 7 288x288 41x 41 X DYN 012 141380646-141380739 13 DAQ 7 128x128 8x 8 X DYN 013 141382032-141390854 5 DAQ 7 288x288 41x 41 X DYN 014 141391540-141392119 33 DAQ 7 160x192 55x 55 X DYN STP004 015 141431616-141431616 2 CAL 7 256x224 10x 10 X DYN 016 141451638-141451638 14 DAQ 7 288x288 41x 41 X DYN 018 141460703-141461033 14 DAQ 7 256x256 8x 8 X DYN 020 141461558-141470415 15 DAQ 7 288x288 41x 41 X DYN 022 141470630-141470957 15 DAQ 7 256x256 8x 8 X DYN 024 141471554-141480355 16 DAQ 7 288x288 41x 41 X DYN (R)026 141480619-141480619 16 DAQ 7 224x224 8x 8 X DYN ---------------------------------------------------------------------MTP004 /DATA/IMG/IMG_1415703_1418209__ZS.LBL ---------------------------------------------------------------------STP005 001 141611457-141620353 17 DAQ 7 288x288 41x 41 X DYN 003 141620647-141620741 17 DAQ 7 128x128 8x 8 X DYN 005 141621445-141630245 17 DAQ 6 288x288 41x 41 X DYN 007 141630643-141630736 17 DAQ 6 128x128 8x 8 X DYN 009 141631458-141640518 6 DAQ 7 416x416 19x 19 X DYN 011 141641355-141642025 3 CAL 7 256x224 15x 15 X DYN 012 141642358-141650629 3 CAL 7 256x224 15x 15 Y DYN 013 141651431-141660237 18 DAQ 7 288x288 41x 41 X DYN 015 141660629-141660722 18 DAQ 7 128x128 8x 8 X DYN 017 141661427-141670231 19 DAQ 7 288x288 41x 41 X DYN 019 141670624-141670717 19 DAQ 7 128x128 8x 8 X DYN 021 141671422-141680224 20 DAQ 7 288x288 41x 41 X DYN 023 141680620-141680712 20 DAQ 7 128x128 8x 8 X DYN STP006 025 141711253-141712025 3 CAL 7 256x256 15x 15 X DYN 026 141721354-141721354 12 DAQ 7 288x288 41x 41 X DYN 028 141730451-141730639 12 DAQ 7 128x128 8x 8 X DYN 030 141731324-141740158 14 DAQ 7 288x288 41x 41 X DYN 032 141740438-141740600 14 DAQ 7 128x128 8x 8 X DYN 034 141741312-141750108 5 DAQ 7 288x288 41x 41 X DYN 036 141750433-141750525 5 DAQ 7 128x128 8x 8 X DYN 038 141751307-141760106 21 DAQ 7 288x288 41x 41 X DYN 040 141760428-141760521 21 DAQ 7 128x128 8x 8 X DYN 042 141761302-141770107 22 DAQ 7 288x288 41x 41 X DYN 044 141770424-141770516 22 DAQ 7 128x128 8x 8 X DYN 046 141771257-141780054 23 DAQ 7 288x288 41x 41 X DYN 048 141780419-141780511 23 DAQ 7 128x128 8x 8 X DYN 050 141781252-141790056 24 DAQ 7 288x288 41x 41 X DYN 052 141790414-141790507 24 DAQ 7 128x128 8x 8 X DYN 054 141791248-141800056 25 DAQ 7 288x288 41x 41 X DYN 056 141800409-141800502 25 DAQ 7 128x128 8x 8 X DYN 058 141801208-141801933 3 CAL 6 256x256 15x 15 X DYN 059 141802248-141810613 3 CAL 6 256x256 15x 15 X DYN ---------------------------------------------------------------------MTP005 /DATA/IMG/IMG_1418502_1421310__ZS.LBL ---------------------------------------------------------------------STP007 001 141862135-141870325 2 CAL 7 256x256 10x 10 X DYN 002 141871148-141872118 9 DAQ 7 256x256 41x 41 X DYN 004 141880045-141880603 9 DAQ 7 384x384 2x 2 X DYN 006 141881203-141890001 10 DAQ 7 288x288 41x 41 X DYN 008 141890338-141890623 10 DAQ 7 256x256 4x 4 X DYN STP008 010 141921144-141930006 17 DAQ 7 288x288 41x 41 X DYN 012 141930304-141930358 17 DAQ 7 128x128 8x 8 X DYN (R)014 141931136-141932323 9 DAQ 7 320x256 41x 41 X DYN 016 141940409-141941559 9 DAQ 7 320x256 41x 41 X DYN 018 141942042-141950830 9 DAQ 7 320x256 41x 41 X DYN 020 141951304-141952325 9 DAQ 7 320x224 41x 41 X DYN STP009 022 141991109-141992333 5 DAQ 7 288x288 41x 41 X DYN 024 142000236-142000421 5 DAQ 7 256x128 8x 8 X DYN 026 142001101-142002249 10 DAQ 7 320x256 41x 41 X DYN 028 142010335-142011525 10 DAQ 7 320x256 41x 41 X DYN 030 142011957-142020620 10 DAQ 7 320x224 41x 41 X DYN 032 142021044-142022235 10 DAQ 7 320x256 41x 41 X DYN STP010 034 142061215-142061215 16 DAQ 7 512x512 2x 2 X DYN 036 142062333-142070727 16 DAQ 7 480x480 1x 1 X DYN 038 142071027-142071754 3 CAL 6 256x256 15x 15 X DYN 039 142072054-142080232 2 CAL 6 256x256 10x 10 X DYN 040 142080517-142081244 3 CAL 6 256x256 15x 15 X DYN 041 142081628-142090415 7 DAQ 7 320x256 41x 41 X DYN 043 142091157-142092347 7 DAQ 7 320x256 41x 41 X DYN 045 142100328-142100656 7 DAQ 7 256x256 8x 8 X DYN 047 142101206-142102352 7 DAQ 7 320x256 41x 41 X DYN 049 142110337-142110704 7 DAQ 7 256x256 8x 8 X DYN 051 142110949-142112140 7 DAQ 7 320x256 41x 41 X DYN 053 142120120-142120446 7 DAQ 7 256x256 8x 8 X DYN 055 142120732-142121918 7 DAQ 7 320x256 41x 41 X DYN 057 142122348-142130915 7 DAQ 7 480x480 4x 4 X DYN ---------------------------------------------------------------------MTP006 /DATA/IMG/IMG_1421310_1424510__ZS.LBL ---------------------------------------------------------------------STP011 001 142131329-142132028 11 DAQ 7 192x192 55x 55 X DYN 004 142140029-142140715 11 DAQ 7 192x192 55x 55 X DYN 006 142141229-142141916 11 DAQ 7 192x192 55x 55 X DYN 008 142142304-142150057 11 DAQ 7 192x192 6x 6 X DYN 010 142150117-142150310 11 DAQ 7 192x192 6x 6 X DYN 012 142150329-142150522 11 DAQ 7 192x192 6x 6 X DYN 014 142150542-142150735 11 DAQ 7 192x192 6x 6 X DYN 016 142151229-142151919 11 DAQ 7 192x192 55x 55 X DYN 018 142160029-142160720 11 DAQ 7 192x192 55x 55 X DYN 020 142161229-142161921 11 DAQ 7 192x192 55x 55 X DYN 022 142170029-142170721 11 DAQ 7 192x192 55x 55 X DYN STP012 024 142171328-142172013 12 DAQ 7 192x192 55x 55 X DYN 026 142180020-142180559 12 DAQ 7 192x160 55x 55 X DYN 028 142181358-142182046 12 DAQ 7 192x192 55x 55 X DYN 030 142190029-142190718 12 DAQ 7 192x192 55x 55 X DYN 032 142190851-142190948 12 DAQ 7 128x128 8x 8 X DYN 034 142191229-142191918 12 DAQ 7 192x192 55x 55 X DYN 036 142192051-142192149 12 DAQ 7 128x128 8x 8 X DYN 038 142200037-142200835 12 DAQ 7 192x224 55x 55 X DYN 040 142201021-142201117 12 DAQ 7 128x128 8x 8 X DYN 042 142201329-142202019 12 DAQ 7 192x192 55x 55 X DYN 044 142210029-142210718 12 DAQ 7 192x192 55x 55 X DYN 046 142210850-142210946 12 DAQ 7 128x128 8x 8 X DYN 048 142211229-142211918 12 DAQ 7 192x192 55x 55 X DYN 050 142212050-142212145 12 DAQ 7 128x128 8x 8 X DYN 052 142220000-142220256 12 DAQ 7 256x256 5x 5 X DYN 054 142220332-142220628 12 DAQ 7 256x256 5x 5 X DYN 056 142221224-142221952 3 CAL 7 256x256 15x 15 X DYN 060 142230035-142230825 3 CAL 7 256x256 15x 42 X DYN 064 142231236-142232018 3 CAL 7 256x256 15x 42 Y DYN 068 142240037-142240849 6 DAQ 7 352x352 11x 31 X DYN STP013 071 142241049-142241052 6 DAQ 1 256x256 24x 24 X DYN 072 142241214-142241216 6 DAQ 1 256x256 24x 24 X DYN 073 142241333-142241336 6 DAQ 1 256x256 24x 24 X DYN 074 142241638-142241638 3 CAL 7 256x 32 15x 0 X DYN 078 142241804-142241902 3 CAL 7 32x256 0x 15 Y DYN 082 142241928-142242026 3 CAL 7 256x 32 15x 0 X DYN 086 142242047-142242147 3 CAL 7 32x256 0x 41 Y DYN 090 142250020-142250558 6 DAQ 7 192x160 55x 55 X DYN 092 142251218-142251903 6 DAQ 7 192x192 55x 55 X DYN 094 142252040-142252134 6 DAQ 7 128x128 8x 8 X DYN 096 142260028-142260714 6 DAQ 7 192x192 55x 55 X DYN 098 142260850-142260945 6 DAQ 7 128x128 8x 8 X DYN 100 142261228-142261914 6 DAQ 7 192x192 55x 55 X DYN 102 142262050-142262145 6 DAQ 7 128x128 8x 8 X DYN 104 142270028-142270714 6 DAQ 7 192x192 55x 55 X DYN 106 142270857-142271044 6 DAQ 7 256x128 8x 8 X DYN 108 142271328-142272014 6 DAQ 7 192x192 55x 55 X DYN 110 142280028-142280735 6 DAQ 7 192x192 55x 55 X DYN 112 142280851-142280950 6 DAQ 7 128x128 8x 8 X DYN 114 142281233-142281924 6 DAQ 7 192x192 55x 55 X DYN 116 142282050-142282143 6 DAQ 7 128x128 8x 8 X DYN 118 142290020-142290557 6 DAQ 7 192x160 55x 55 X DYN 120 142291218-142291903 6 DAQ 7 192x192 55x 55 X DYN 122 142292040-142292132 6 DAQ 7 128x128 8x 8 X DYN 124 142300028-142300713 6 DAQ 7 192x192 55x 55 X DYN 126 142300850-142300945 6 DAQ 7 128x128 8x 8 X DYN 128 142301228-142301916 6 DAQ 7 192x192 55x 55 X DYN 130 142302051-142302149 6 DAQ 7 128x128 8x 8 X DYN 132 142310029-142310718 6 DAQ 7 192x192 55x 55 X DYN 134 142310851-142310949 6 DAQ 7 128x128 8x 8 X DYN STP014 136 142311329-142312020 8 DAQ 7 192x192 55x 55 X DYN 138 142320020-142320601 8 DAQ 7 192x160 55x 55 X DYN 140 142321220-142321907 8 DAQ 7 192x192 55x 55 X DYN 142 142322042-142322149 8 DAQ 7 160x128 8x 8 X DYN 144 142330029-142330717 8 DAQ 7 192x192 55x 55 X DYN 146 142330850-142330946 8 DAQ 7 128x128 8x 8 X DYN 148 142331229-142331918 8 DAQ 7 192x192 55x 55 X DYN 150 142332051-142332146 8 DAQ 7 128x128 8x 8 X DYN 152 142340021-142340605 3 CAL 7 224x224 15x 15 X DYN 153 142340840-142341426 3 CAL 7 224x224 15x 15 X DYN 154 142341624-142341717 8 DAQ 7 128x128 8x 8 X DYN 156 142341822-142341915 8 DAQ 7 128x128 8x 8 X DYN 158 142342020-142342112 8 DAQ 7 128x128 8x 8 X DYN 160 142350043-142350728 8 DAQ 7 192x192 55x 55 X DYN 162 142350905-142350957 8 DAQ 7 128x128 8x 8 X DYN 164 142351243-142351928 8 DAQ 7 192x192 55x 55 X DYN 166 142352105-142352158 8 DAQ 7 128x128 8x 8 X DYN 168 142360035-142360612 8 DAQ 7 192x160 55x 55 X DYN 170 142361218-142361904 8 DAQ 7 192x192 55x 55 X DYN 172 142362042-142362149 8 DAQ 7 160x128 8x 8 X DYN 174 142370043-142370731 8 DAQ 7 192x192 55x 55 X DYN 176 142370904-142370946 8 DAQ 7 128x 96 8x 8 X DYN STP015 178 142371243-142371931 8 DAQ 7 192x192 55x 55 X DYN 180 142372106-142372203 8 DAQ 7 128x128 8x 8 X DYN 182 142380043-142380730 8 DAQ 7 192x192 55x 55 X DYN 184 142380905-142381000 8 DAQ 7 128x128 8x 8 X DYN 186 142381313-142381958 13 DAQ 7 192x192 55x 55 X DYN 188 142390035-142390613 13 DAQ 7 192x160 55x 55 X DYN 190 142391218-142391903 13 DAQ 7 192x192 55x 55 X DYN 192 142392040-142392133 13 DAQ 7 128x128 8x 8 X DYN 194 142400044-142400732 13 DAQ 7 192x192 55x 55 X DYN 196 142400905-142401000 13 DAQ 7 128x128 8x 8 X DYN 198 142401244-142401932 13 DAQ 7 192x192 55x 55 X DYN 200 142402106-142402202 13 DAQ 7 128x128 8x 8 X DYN 202 142410044-142410734 13 DAQ 7 192x192 55x 55 X DYN 204 142410906-142411003 13 DAQ 7 128x128 8x 8 X DYN 206 142411305-142411847 13 DAQ 7 192x160 55x 55 X DYN 208 142412012-142412200 13 DAQ 7 256x128 8x 8 X DYN 210 142420044-142420735 13 DAQ 7 192x192 55x 55 X DYN 212 142420906-142421001 13 DAQ 7 128x128 8x 8 X DYN 214 142421244-142421934 13 DAQ 7 192x192 55x 55 X DYN 216 142422106-142422201 13 DAQ 7 128x128 8x 8 X DYN 218 142430036-142430619 13 DAQ 7 192x160 55x 55 X DYN 220 142431219-142431910 13 DAQ 7 192x192 55x 55 X DYN 222 142432042-142432151 13 DAQ 7 160x128 8x 8 X DYN 224 142440044-142440738 13 DAQ 7 192x192 55x 55 X DYN 226 142440906-142441003 13 DAQ 7 128x128 8x 8 X DYN 228 142441244-142441937 13 DAQ 7 192x192 55x 55 X DYN 230 142442106-142442203 13 DAQ 7 128x128 8x 8 X DYN 232 142442359-142450052 13 DAQ 7 128x128 8x 8 X DYN 234 142450157-142450250 13 DAQ 7 128x128 8x 8 X DYN 236 142450425-142450914 13 DAQ 7 320x320 6x 6 X DYN ---------------------------------------------------------------------MTP007 /DATA/IMG/IMG_1424510_1426610__ZS.LBL ---------------------------------------------------------------------STP016 001 142451319-142452048 3 CAL 7 256x256 15x 15 X DYN 002 142460036-142460618 3 CAL 7 224x224 15x 15 Y DYN 003 142461249-142462021 3 CAL 7 256x256 15x 15 X DYN 007 142462353-142462353 3 CAL 7 256x256 15x 15 X DYN 010 142471249-142472019 3 CAL 7 256x256 15x 15 Y DYN 013 142480044-142480746 14 DAQ 7 192x192 55x 150 X DYN 015 142480906-142481004 14 DAQ 7 128x 96 14x 39 X DYN 017 142481314-142482009 14 DAQ 7 192x192 55x 150 X DYN 019 142490043-142490731 14 DAQ 7 192x192 55x 150 X DYN 021 142490905-142490959 14 DAQ 7 128x 96 14x 39 X DYN 023 142491244-142491940 14 DAQ 7 192x192 55x 150 X DYN 025 142492105-142492201 14 DAQ 7 128x 96 14x 39 X DYN 027 142500035-142500622 14 DAQ 7 192x160 55x 150 X DYN 029 142501219-142501908 14 DAQ 7 192x192 55x 150 X DYN 031 142502043-142502200 14 DAQ 7 128x128 14x 39 X DYN 033 142510044-142510741 14 DAQ 7 192x192 55x 150 X DYN 035 142510905-142511000 14 DAQ 7 128x 96 14x 39 X DYN 037 142511244-142511942 14 DAQ 7 192x192 55x 150 X DYN 039 142512106-142512200 14 DAQ 7 128x 96 14x 39 X DYN 041 142520044-142520742 14 DAQ 7 192x192 55x 150 X DYN 043 142520905-142520958 14 DAQ 7 128x 96 14x 39 X DYN STP017 045 142521243-142530331 15 DAQ 7 224x224 94x 257 X DYN 047 142531218-142531905 15 DAQ 7 192x192 55x 150 X DYN 049 142532043-142532153 15 DAQ 7 128x128 14x 39 X DYN 051 142532346-142540638 15 DAQ 7 192x192 55x 150 X DYN 053 142540810-142540927 15 DAQ 7 128x128 14x 39 X DYN 055 142541113-142541805 15 DAQ 7 192x192 55x 150 X DYN 057 142541937-142542052 15 DAQ 7 128x128 14x 39 X DYN 059 142542240-142550532 15 DAQ 7 192x192 55x 150 X DYN 061 142550704-142550818 15 DAQ 7 128x128 14x 39 X DYN 063 142551007-142551700 15 DAQ 7 192x192 55x 150 X DYN 065 142551831-142551946 15 DAQ 7 128x128 14x 39 X DYN 067 142552134-142560430 15 DAQ 7 192x192 55x 150 X DYN 069 142560558-142560716 15 DAQ 7 128x128 14x 39 X DYN 071 142560901-142561556 15 DAQ 7 192x192 55x 150 X DYN 073 142561725-142561841 15 DAQ 7 128x128 14x 39 X DYN 075 142562028-142570322 15 DAQ 7 192x192 55x 150 X DYN 077 142570452-142570607 15 DAQ 7 128x128 14x 39 X DYN 079 142571408-142572220 3 CAL 7 256x256 15x 15 X DYN 080 142572357-142580810 3 CAL 7 256x256 15x 15 X DYN 081 142581027-142581811 3 CAL 7 256x256 15x 15 X DYN 082 142582105-142590514 8 DAQ 7 192x192 55x 55 X DYN 084 142590724-142590932 8 DAQ 7 192x192 8x 8 X DYN STP018 086 142591243-142600330 11 DAQ 7 224x224 94x 94 X DYN 088 142641500-142650547 11 DAQ 7 224x224 94x 94 X DYN 090 142650917-142651138 11 DAQ 7 192x192 10x 10 X DYN 092 142651202-142651423 11 DAQ 7 192x192 10x 10 X DYN 094 142651447-142651707 11 DAQ 7 192x192 10x 10 X DYN 096 142651732-142651953 11 DAQ 7 192x192 10x 10 X DYN 098 142652205-142660820 11 DAQ 7 288x192 55x 55 X DYN ---------------------------------------------------------------------MTP008 /DATA/IMG/IMG_1426610_1429710__ZS.LBL ---------------------------------------------------------------------STP019 001 142661600-142662147 3 CAL 7 224x224 15x 15 X DYN 005 142670022-142670612 3 CAL 7 224x224 15x 15 Y DYN 009 142671343-142680738 11 DAQ 5 224x224 94x 257 X DYN 011 142681310-142681741 11 DAQ 5 256x256 10x 28 X DYN 013 142681937-142690119 4 CAL 7 256x256 10x 10 X DYN 014 142690350-142691047 16 DAQ 7 192x192 55x 150 X DYN 016 142691215-142691336 16 DAQ 7 128x128 14x 39 X DYN 018 142691517-142692207 16 DAQ 7 192x192 55x 150 X DYN 020 142692341-142700055 16 DAQ 7 128x128 14x 39 X DYN 022 142700244-142700938 16 DAQ 7 192x192 55x 150 X DYN 024 142701108-142701226 16 DAQ 7 128x128 14x 39 X DYN 026 142701411-142702103 16 DAQ 7 192x192 55x 150 X DYN 028 142702235-142702351 16 DAQ 7 128x128 14x 39 X DYN STP020 030 142721319-142730407 11 DAQ 7 224x224 94x 257 Y DYN 032 142730751-142731204 11 DAQ 7 256x256 10x 28 Y DYN 034 142741601-142750646 11 DAQ 7 224x224 94x 257 Y DYN 036 142751118-142751514 11 DAQ 7 256x256 10x 28 Y DYN 038 142752329-142760618 16 DAQ 7 192x192 55x 150 Y DYN 040 142760753-142760906 16 DAQ 7 128x128 14x 39 Y DYN STP021 042 142781459-142790546 11 DAQ 7 224x224 94x 257 Y DYN 044 142790953-142791707 11 DAQ 7 288x288 18x 50 Y DYN 046 142791819-142800003 11 DAQ 7 320x320 7x 18 Y DYN 048 142800055-142800639 11 DAQ 7 320x320 7x 18 Y DYN 050 142800731-142801316 11 DAQ 7 320x320 7x 18 Y DYN 052 142801409-142801951 11 DAQ 7 320x320 7x 18 Y DYN 054 142802043-142810224 11 DAQ 7 320x320 7x 18 Y DYN 056 142810316-142810649 11 DAQ 7 320x320 7x 18 Y DYN STP022 058 142851459-142860546 11 DAQ 7 224x224 94x 257 Y DYN 060 142860953-142861705 11 DAQ 7 288x288 18x 50 Y DYN 062 142861818-142862359 11 DAQ 7 320x320 7x 18 Y DYN 064 142870051-142870635 11 DAQ 7 320x320 7x 18 Y DYN 066 142870727-142871311 11 DAQ 7 320x320 7x 18 Y DYN 068 142871402-142871940 11 DAQ 7 320x320 7x 18 Y DYN 070 142872032-142880210 11 DAQ 7 320x320 7x 18 Y DYN 072 142880302-142880649 11 DAQ 7 320x320 7x 18 Y DYN STP023 074 142921347-142922206 11 DAQ 5 224x224 94x 94 X DYN 076 142930952-142931637 11 DAQ 5 288x288 18x 18 X DYN 078 142931801-142932131 11 DAQ 5 256x256 8x 8 X DYN 080 142940059-142941931 11 DAQ 5 288x192 73x 109 X DYN 082 142950024-142950619 11 DAQ 5 256x256 20x 20 X DYN ---------------------------------------------------------------------MTP009 /DATA/IMG/IMG_1429710_1432600__ZS.LBL ---------------------------------------------------------------------STP025 001 143020120-143021602 11 DAQ 5 224x224 94x 94 X DYN 003 143022012-143030305 11 DAQ 5 288x288 18x 18 X DYN 005 143030421-143030759 11 DAQ 5 256x256 8x 8 X DYN STP026 007 143031043-143031552 11 DAQ 5 320x320 3x 3 X DYN 009 143031640-143032148 11 DAQ 5 320x320 3x 3 X DYN 011 143032236-143040000 11 DAQ 5 320x320 3x 3 X DYN 013 143040510-143041048 11 DAQ 5 256x256 20x 20 X DYN 015 143041229-143041814 11 DAQ 5 256x256 20x 20 X DYN 017 143041948-143050138 11 DAQ 5 256x256 20x 20 X DYN 019 143050305-143050850 11 DAQ 5 256x256 20x 20 X DYN 021 143051023-143051611 11 DAQ 5 256x256 20x 20 X DYN 023 143051742-143052332 11 DAQ 5 256x256 20x 20 X DYN 025 143060059-143060643 11 DAQ 5 256x256 20x 20 X DYN 027 143060817-143061402 11 DAQ 5 256x256 20x 20 X DYN 029 143061535-143062123 11 DAQ 5 256x256 20x 20 X DYN 031 143062309-143070701 11 DAQ 5 480x480 1x 1 X DYN 033 143071424-143080036 11 DAQ 5 288x192 55x 55 X DYN 035 143080333-143081023 11 DAQ 5 288x288 18x 18 X DYN 037 143081143-143081520 11 DAQ 5 256x256 8x 8 X DYN 039 143081600-143081937 11 DAQ 5 256x256 8x 8 X DYN 041 143082017-143082353 11 DAQ 5 256x256 8x 8 X DYN 043 143090034-143090411 11 DAQ 5 256x256 8x 8 X DYN STP027 045 143091733-143100818 11 DAQ 5 224x224 94x 94 X DYN 047 143101258-143101952 11 DAQ 5 288x288 18x 18 X DYN 049 143102132-143110429 11 DAQ 5 288x288 18x 18 X DYN 051 143110605-143111257 11 DAQ 5 288x288 18x 18 X DYN 053 143111440-143112135 11 DAQ 5 288x288 18x 18 X DYN 055 143112249-143120229 11 DAQ 5 256x256 8x 8 X DYN 057 143120306-143120646 11 DAQ 5 256x256 8x 8 X DYN 059 143120918-143120918 11 DAQ 5 480x480 4x 4 X DYN 060 143120918-143120918 11 DAQ 5 480x480 4x 4 X DYN 061 143121907-143121907 11 DAQ 5 160x160 25x 25 X DYN 062 143121907-143121907 11 DAQ 5 160x160 25x 25 X DYN 063 143121907-143121907 11 DAQ 5 160x160 25x 25 X DYN STP028 (M)064 143181201-143181403 11 DAQ 5 224x224 94x 94 X DYN 066 143191434-143191440 11 DAQ 5 288x288 18x 18 X DYN 068 143192308-143192308 11 DAQ 5 256x256 8x 8 X DYN 070 143201202-143201716 11 DAQ 5 224x224 94x 94 X DYN 072 143210740-143211050 11 DAQ 5 192x192 55x 55 X DYN 074 143211735-143220100 11 DAQ 5 192x192 55x 55 X DYN (M)076 143220325-143221014 11 DAQ 5 192x192 55x 55 X DYN (M)078 143221319-143222013 11 DAQ 5 192x192 55x 55 X DYN STP029 080 143230336-143230336 11 DAQ 7 224x224 47x 47 X DYN 082 143231506-143231953 11 DAQ 7 256x256 10x 10 X DYN (M)084 143232134-143240631 11 DAQ 7 224x224 47x 47 X DYN 086 143240711-143241121 11 DAQ 7 256x256 10x 10 X DYN 088 143241317-143242003 11 DAQ 7 224x224 47x 47 X DYN 090 143242304-143242304 11 DAQ 7 256x256 10x 10 X DYN 092 143250440-143250440 11 DAQ 7 224x224 47x 47 X DYN 094 143251528-143251528 11 DAQ 7 256x256 10x 10 X DYN ---------------------------------------------------------------------MTP010 /DATA/IMG/IMG_1432523_1435400__ZS.LBL ---------------------------------------------------------------------STP030 001 143260508-143260508 11 DAQ 7 224x224 94x 94 X DYN 003 143270058-143270058 11 DAQ 7 288x288 18x 18 X DYN 005 143270932-143270932 11 DAQ 7 288x288 18x 18 X DYN 007 143271806-143271806 11 DAQ 7 256x256 8x 8 X DYN 009 143272311-143272311 11 DAQ 7 224x224 47x 47 X DYN 011 143281047-143281047 11 DAQ 7 224x224 47x 47 X DYN STP031 013 143300700-143301256 11 DAQ 5 224x224 94x 94 X DYN 015 143310105-143310106 11 DAQ 5 288x288 18x 18 X DYN 017 143311035-143311830 11 DAQ 5 288x288 18x 18 X DYN (M)019 143311932-143320244 11 DAQ 5 288x288 18x 18 X DYN 021 143320345-143321053 11 DAQ 5 288x288 18x 18 X DYN 023 143321142-143321528 11 DAQ 5 256x256 8x 8 X DYN 025 143321603-143321948 11 DAQ 5 256x256 8x 8 X DYN 027 143330649-143332027 11 DAQ 5 416x416 13x 13 X DYN (M)029 143332224-143341218 11 DAQ 5 416x416 13x 13 X DYN (M)031 143341411-143350401 11 DAQ 5 416x416 13x 13 X DYN 033 143350607-143351937 11 DAQ 5 416x416 13x 13 X DYN (M)035 143352139-143361058 11 DAQ 5 416x416 13x 13 X DYN 037 143361130-143361631 11 DAQ 5 416x416 13x 13 X DYN STP033 (M)039 143440904-143451306 11 DAQ 7 256x256 82x 82 X DYN 041 143451807-143460111 11 DAQ 7 448x448 23x 23 X DYN ---------------------------------------------------------------------MTP011 /DATA/IMG/IMG_1435401_1501400__ZS.LBL ---------------------------------------------------------------------STP035 001 143540818-143541356 4 CAL 5 256x256 10x 10 X DYN 002 143541748-143550927 13 DAQ 7 192x192 55x 55 X DYN 004 143551112-143552049 13 DAQ 7 192x192 55x 55 X DYN 006 143552233-143560807 13 DAQ 7 192x192 55x 55 X DYN 008 143561214-143562149 13 DAQ 7 192x192 55x 55 X DYN 010 143570203-143571139 13 DAQ 7 192x192 55x 55 X DYN 012 143571417-143571752 13 DAQ 7 256x256 8x 8 X DYN 014 143571834-143572209 13 DAQ 7 256x256 8x 8 X DYN STP036 016 143580618-143581554 13 DAQ 7 192x192 55x 55 X DYN 018 143582006-143590544 13 DAQ 7 192x192 55x 55 X DYN 020 143590954-143591931 13 DAQ 7 192x192 55x 55 X DYN (M)022 143592342-143601303 13 DAQ 7 192x192 55x 55 X DYN 024 143601447-143610026 13 DAQ 7 192x192 55x 55 X DYN 026 143610144-143610518 13 DAQ 7 256x256 8x 8 X DYN 028 143610601-143610937 13 DAQ 7 256x256 8x 8 X DYN 030 143612039-143630056 13 DAQ 7 288x320 66x 66 X DYN 032 143631133-143641548 13 DAQ 9 288x320 66x 66 X DYN STP037 034 143650726-143652344 11 DAQ 7 256x256 82x 82 X DYN 036 150020350-150030633 11 DAQ 7 448x448 23x 23 X DYN STP038 038 150100842-150111300 13 DAQ 9 288x320 66x 66 X DYN 040 150120029-150120940 11 DAQ 5 256x256 82x 82 X DYN ---------------------------------------------------------------------MTP012 /DATA/IMG/IMG_1501323_1504200__ZS.LBL ---------------------------------------------------------------------STP039 001 150140509-150140511 13 DAQ 7 192x192 55x 55 X DYN 003 150141857-150141857 13 DAQ 7 192x192 55x 55 X DYN 005 150150756-150150756 13 DAQ 7 224x224 9x 9 X DYN 007 150151334-150151336 13 DAQ 1 256x256 24x 24 X DYN 008 150151637-150151640 13 DAQ 1 256x256 24x 24 X DYN 009 150152156-150152157 13 DAQ 7 192x192 55x 55 X DYN 011 150180514-150181622 13 DAQ 7 192x192 55x 55 X DYN (M)013 150182059-150190815 13 DAQ 7 192x192 55x 55 X DYN 015 150191244-150200012 13 DAQ 7 192x192 55x 55 X DYN 017 150200429-150201545 13 DAQ 7 192x192 55x 55 X DYN 019 150201922-150202256 13 DAQ 7 224x224 9x 9 X DYN STP040 021 150240510-150260913 11 DAQ 7 352x352 70x 70 X DYN 023 150270436-150271745 13 DAQ 7 224x224 55x 55 X DYN STP041 (M)025 150330516-150341214 13 DAQ 9 288x320 66x 66 X DYN STP042 027 150351052-150351232 5 DAQ 11 128x128 15x 15 X DYN 029 150351238-150351720 5 DAQ 11 128x128 55x 55 X DYN 031 150351910-150361713 12 DAQ 11 320x320 66x 66 X DYN 033 150370028-150370558 12 DAQ 11 320x320 8x 8 X DYN 035 150370755-150371332 2 CAL 11 256x256 10x 10 X DYN 037 150380655-150390459 12 DAQ 11 320x320 66x 66 X DYN 039 150391213-150391742 12 DAQ 11 320x320 8x 8 X DYN 041 150391941-150401531 12 DAQ 11 288x320 66x 66 X DYN 043 150402205-150410337 12 DAQ 11 320x320 8x 8 X DYN 045 150410534-150411117 4 CAL 7 256x256 10x 10 X DYN 046 150411340-150412114 3 CAL 7 256x256 15x 15 X DYN ---------------------------------------------------------------------MTP013 /DATA/IMG/IMG_1504123_1507000__ZS.LBL ---------------------------------------------------------------------STP043 001 150460119-150470940 12 DAQ 11 256x256 82x 82 X DYN 003 150480329-150480930 4 CAL 11 256x256 10x 10 X DYN STP044 004 150490521-150491422 13 DAQ 9 352x352 15x 15 X DYN (M)007 150491641-150500144 13 DAQ 9 352x352 15x 15 X DYN (M)010 150500401-150501314 13 DAQ 9 352x352 15x 15 X DYN 013 150501624-150510637 13 DAQ 9 256x256 66x 66 X DYN 015 150520541-150522245 15 DAQ 9 256x256 82x 82 X DYN 017 150550617-150551502 15 DAQ 9 64x 64 328x 328 X DYN STP045 019 150560857-150561529 4 CAL 10 256x256 10x 10 X DYN 020 150561722-150571014 14 DAQ 10 256x256 82x 82 X DYN 022 150571550-150572126 14 DAQ 10 320x320 8x 8 X DYN 024 150572339-150581633 14 DAQ 10 256x256 82x 82 X DYN 026 150590540-150592232 14 DAQ 10 256x256 82x 82 X DYN 028 150600408-150600934 14 DAQ 10 320x320 8x 8 X DYN 030 150601157-150610448 14 DAQ 10 256x256 82x 82 X DYN 032 150611025-150611555 14 DAQ 10 320x320 8x 8 X DYN 034 150611814-150621108 14 DAQ 10 256x256 82x 82 X DYN 036 150621642-150622213 14 DAQ 10 320x320 8x 8 X DYN STP046 038 150630618-150630728 5 DAQ 11 128x128 15x 15 X DYN 040 150630805-150631219 5 DAQ 11 128x128 55x 55 X DYN 042 150631901-150640102 4 CAL 13 256x256 10x 10 X DYN 043 150640350-150650404 12 DAQ 13 256x256 82x 82 X DYN 045 150651226-150652042 12 DAQ 13 320x320 12x 12 X DYN 047 150660414-150670427 12 DAQ 13 256x256 82x 82 X DYN 049 150671250-150672112 12 DAQ 13 320x320 12x 12 X DYN 051 150680044-150690057 12 DAQ 13 256x256 82x 82 X DYN 053 150690920-150691735 12 DAQ 13 320x320 12x 12 X DYN ---------------------------------------------------------------------MTP014 /DATA/IMG/IMG_1506923_1508813__ZS.LBL ---------------------------------------------------------------------STP047 001 150700418-150701042 4 CAL 9 256x256 10x 10 X DYN 002 150701218-150701548 4 CAL 9 256x256 4x 4 X DYN 003 150701814-150712327 15 DAQ 9 256x256 82x 82 X DYN 005 150720844-150721658 13 DAQ 9 256x256 21x 21 X DYN 008 150721724-150722320 13 DAQ 9 256x256 1x 1 X DYN 010 150730359-150730802 15 DAQ 9 64x 64 328x 328 X DYN 012 150731011-150731414 15 DAQ 9 64x 64 328x 328 X DYN 014 150731623-150732026 15 DAQ 9 64x 64 328x 328 X DYN 016 150760821-150761641 15 DAQ 9 64x 64 328x 328 X DYN STP048 018 150770436-150772130 14 DAQ 10 256x256 82x 82 X DYN 020 150780317-150780918 4 CAL 10 256x256 10x 10 X DYN 021 150801232-150810520 7 DAQ 10 256x256 82x 82 X DYN 023 150811111-150811619 7 DAQ 10 256x256 15x 15 X DYN 025 150811731-150812236 7 DAQ 10 256x256 15x 15 X DYN 027 150812334-150820438 7 DAQ 10 256x256 15x 15 X DYN 029 150820537-150821044 7 DAQ 10 256x256 15x 15 X DYN 031 150821140-150821647 7 DAQ 10 256x256 15x 15 X DYN 033 150821743-150822249 7 DAQ 10 256x256 15x 15 X DYN 035 150830117-150831346 13 DAQ 7 192x192 55x 55 X DYN STP049 037 150841851-150851920 12 DAQ 14 256x256 82x 82 X DYN 039 150860256-150861117 12 DAQ 14 320x320 12x 12 X DYN ---------------------------------------------------------------------MTP015 /DATA/IMG/IMG_1509813_1512600__ZS.LBL ---------------------------------------------------------------------STP051 001 150990106-150990437 4 CAL 9 256x256 4x 4 X DYN 002 150990619-150991215 13 DAQ 9 256x256 21x 21 X DYN 005 150991359-150991959 13 DAQ 9 256x256 21x 21 X DYN 007 151000651-151001717 12 DAQ 14 64x 64 328x 328 X DYN 010 151010341-151010733 4 CAL 7 256x256 4x 4 X DYN 011 151011001-151020727 14 DAQ 7 224x224 94x 94 X DYN 014 151021547-151031542 14 DAQ 10 224x224 94x 94 X DYN 017 151032127-151040206 3 CAL 9 128x128 60x 60 X DYN 020 151040435-151040919 3 CAL 9 128x128 60x 168 X DYN STP052 023 151050903-151060754 11 DAQ 5 160x160 131x 131 X DYN 026 151062042-151070431 3 CAL 10 256x256 15x 15 X DYN 027 151080331-151090343 3 CAL 9 256x256 80x 80 X DYN 030 151091243-151101325 3 CAL 9 256x256 80x 225 X DYN 033 151102239-151111644 15 DAQ 14 224x224 94x 94 X DYN STP053 036 151122334-151130335 4 CAL 13 256x256 4x 4 X DYN 037 151131652-151140017 13 DAQ 9 256x256 25x 25 X DYN 040 151140133-151140917 13 DAQ 9 256x256 13x 13 X DYN 042 151141420-151142206 12 DAQ 14 64x 64 328x 328 X DYN 045 151150447-151160543 13 DAQ 9 288x320 66x 66 X DYN (M)048 151161353-151171542 13 DAQ 9 288x320 66x 66 X DYN 051 151180432-151181904 7 DAQ 10 224x224 94x 94 X DYN STP054 (M)054 151190521-151201027 15 DAQ 9 256x256 82x 82 X DYN 057 151201944-151212311 15 DAQ 9 256x256 4x 4 X DYN 059 151240113-151241816 22 DAQ 10 256x256 82x 82 X DYN 062 151250105-151251955 13 DAQ 10 224x224 94x 94 X DYN ---------------------------------------------------------------------MTP016 /DATA/IMG/IMG_1512523_1515400__ZS.LBL ---------------------------------------------------------------------STP055 001 151260815-151270656 15 DAQ 14 256x256 82x 82 X DYN 004 151271426-151281256 15 DAQ 14 256x256 1x 1 X DYN 006 151301540-151311812 12 DAQ 14 256x256 82x 82 X DYN 009 151321520-151322138 13 DAQ 7 160x160 66x 66 X DYN STP056 012 151330712-151331114 4 CAL 9 256x256 4x 4 X DYN 013 151331228-151332146 3 CAL 14 256x256 15x 15 X DYN 016 151340014-151340839 3 CAL 14 320x320 12x 12 X DYN 019 151341230-151351458 13 DAQ 9 288x320 66x 66 X DYN 022 151360815-151361944 3 CAL 9 128x128 160x 160 X DYN 025 151370046-151371213 3 CAL 9 128x128 160x 160 X DYN 028 151371717-151380445 3 CAL 9 128x128 160x 160 X DYN (M)031 151381013-151391826 11 DAQ 7 256x256 82x 82 X DYN STP057 034 151400827-151410823 14 DAQ 10 224x224 94x 94 X DYN 037 151411603-151420026 12 DAQ 14 64x 64 328x 328 X DYN 040 151420332-151421154 12 DAQ 14 64x 64 328x 328 X DYN 043 151430710-151431234 4 CAL 5 256x256 4x 4 X DYN 044 151432025-151442024 13 DAQ 10 224x224 94x 94 X DYN 047 151450312-151452137 7 DAQ 10 224x224 94x 94 X DYN STP058 050 151481010-151481012 2 CAL 1 256x256 24x 24 X DYN 051 151481210-151481213 2 CAL 1 256x256 24x 24 X DYN 052 151482048-151490243 4 CAL 10 256x256 10x 10 X DYN (M)053 151521832-151530853 13 DAQ 10 288x288 22x 22 X DYN 056 151531114-151532036 3 CAL 10 256x256 15x 15 X DYN ---------------------------------------------------------------------MTP017 /DATA/IMG/IMG_1515323_1518200__ZS.LBL ---------------------------------------------------------------------STP059 001 151541929-151550122 2 CAL 6 64x128 164x 164 Y DYN 004 151550425-151551024 2 CAL 7 64x128 164x 164 Y DYN 007 151551330-151561849 12 DAQ 14 256x256 82x 82 X DYN 010 151570859-151581007 5 DAQ 8 256x256 82x 82 Y CON 013 151581904-151591259 22 DAQ 10 256x256 82x 82 X DYN STP060 016 151640818-151641759 12 DAQ 14 64x 64 328x 328 X DYN 019 151641905-151651324 15 DAQ 9 256x512 31x 31 X DYN 022 151660055-151660715 4 CAL 14 256x256 4x 4 X DYN STP061 025 151681134-151681838 4 CAL 10 256x256 4x 4 X DYN 028 151681948-151690654 3 CAL 10 256x256 15x 15 X DYN 031 151692252-151701815 5 DAQ 8 256x256 82x 82 Y CON 034 151710849-151712012 2 CAL 7 128x128 164x 164 Y DYN 037 151720006-151721336 2 CAL 10 128x128 164x 164 Y DYN 040 151721628-151730545 2 CAL 15 128x128 164x 164 Y DYN 043 151730850-151732205 2 CAL 11 128x128 164x 164 Y DYN STP062 046 151750722-151760142 15 DAQ 9 256x512 31x 31 X DYN 049 151760826-151761938 3 CAL 7 192x192 55x 55 X DYN 052 151770109-151770856 14 DAQ 10 64x 64 328x 328 X DYN 055 151771236-151772024 14 DAQ 10 64x 64 328x 328 X DYN 058 151780835-151791307 3 CAL 9 256x256 82x 82 X DYN 061 151792311-151801724 23 DAQ 10 224x224 94x 257 Y DYN 064 151810006-151811820 23 DAQ 10 224x224 94x 257 Y DYN ---------------------------------------------------------------------MTP018 /DATA/IMG/IMG_1518123_1521000__ZS.LBL ---------------------------------------------------------------------STP063 001 151830229-151830946 4 CAL 14 256x256 4x 4 Y DYN 004 151832122-151841817 22 DAQ 14 224x224 94x 257 Y DYN 008 151850823-151860859 22 DAQ 14 256x256 82x 225 Y DYN 012 151861722-151871756 22 DAQ 14 256x256 82x 225 Y DYN STP064 (M)016 151891126-151901203 15 DAQ 9 256x256 82x 82 X DYN STP065 019 151960630-151961023 11 DAQ 5 256x256 8x 8 X DYN 022 151961640-151971713 22 DAQ 14 256x256 82x 225 Y DYN 026 151980017-151980045 12 DAQ 14 64x 64 328x 328 X DYN 029 151980152-151980227 12 DAQ 14 64x 64 328x 328 X DYN 032 151980336-151980424 12 DAQ 14 64x 64 328x 328 X DYN 035 151980534-151980628 12 DAQ 14 64x 64 328x 328 X DYN 038 151980739-151980832 12 DAQ 14 64x 64 328x 328 X DYN 041 151981102-151981403 11 DAQ 10 64x 64 328x 900 Y DYN 044 151990826-152000851 22 DAQ 14 256x256 82x 225 Y DYN 048 152001755-152010148 13 DAQ 10 64x 64 328x 328 X DYN 052 152010536-152011329 13 DAQ 10 64x 64 328x 328 X DYN 056 152011717-152020109 13 DAQ 10 64x 64 328x 328 X DYN 060 152020458-152021251 13 DAQ 10 64x 64 328x 328 X DYN 064 152021610-152022207 11 DAQ 10 64x 64 328x 900 Y DYN STP066 067 152031909-152041218 13 DAQ 14 288x288 22x 22 X DYN 070 152041404-152041844 3 CAL 15 256x256 4x 11 Y DYN 073 152042019-152050102 3 CAL 16 256x256 4x 11 Y DYN 076 152050234-152050720 3 CAL 12 256x256 4x 11 Y DYN 079 152051028-152051909 14 DAQ 10 64x 64 328x 328 X DYN 082 152060819-152070353 23 DAQ 10 224x224 94x 257 Y DYN 085 152071054-152080632 23 DAQ 10 224x224 94x 257 Y DYN 088 152081336-152091317 22 DAQ 10 224x224 94x 257 Y DYN ---------------------------------------------------------------------MTP019 /DATA/IMG/IMG_1520923_1523800__ZS.LBL ---------------------------------------------------------------------STP067 001 152101846-152111147 6 DAQ 9 256x256 82x 225 Y DYN 004 152111948-152112116 12 DAQ 14 32x 32 328x 328 X DYN 007 152112202-152112329 12 DAQ 14 32x 32 328x 328 X DYN 010 152120015-152120141 12 DAQ 14 32x 32 328x 328 X DYN 013 152120228-152120354 12 DAQ 14 32x 32 328x 328 X DYN 016 152120603-152121019 4 CAL 8 256x256 4x 4 X CON 019 152121649-152122228 11 DAQ 10 64x 64 328x 900 Y DYN (M)022 152131132-152131639 11 DAQ 10 64x 64 328x 900 Y DYN 025 152132035-152140149 11 DAQ 10 64x 64 328x 900 Y DYN 028 152140748-152150051 6 DAQ 9 256x256 82x 225 Y DYN 031 152150734-152160053 6 DAQ 9 256x256 82x 225 Y DYN 034 152160654-152161730 22 DAQ 14 256x256 41x 112 Y DYN STP068 038 152170716-152172017 22 DAQ 14 512x512 5x 14 Y DYN 040 152172236-152181015 22 DAQ 14 512x512 5x 14 Y DYN 042 152181400-152190138 22 DAQ 14 512x512 5x 14 Y DYN 044 152190522-152191655 22 DAQ 14 512x512 5x 14 Y DYN 046 152200737-152201857 22 DAQ 14 256x256 41x 112 Y DYN 050 152202310-152211034 22 DAQ 14 256x256 41x 112 Y DYN ---------------------------------------------------------------------MTP020 /DATA/IMG/IMG_1523723_1526600__ZS.LBL ---------------------------------------------------------------------STP072 001 152450718-152452032 23 DAQ 14 512x512 5x 14 Y DYN 003 152452239-152461047 23 DAQ 14 512x512 5x 14 Y DYN 005 152461403-152470229 23 DAQ 14 512x512 5x 14 Y DYN 007 152470526-152471737 23 DAQ 14 512x512 5x 14 Y DYN 009 152480745-152482132 3 CAL 10 256x256 41x 112 Y DYN 013 152482314-152491131 3 CAL 10 256x256 41x 112 Y DYN ---------------------------------------------------------------------MTP021 /DATA/IMG/IMG_1526523_1529400__ZS.LBL ---------------------------------------------------------------------STP075 001 152660849-152661613 22 DAQ 14 64x 64 328x 900 Y DYN 005 152662024-152670407 22 DAQ 14 64x 64 328x 900 Y DYN 009 152670757-152671540 22 DAQ 14 64x 64 328x 900 Y DYN 013 152671930-152680313 23 DAQ 14 64x 64 328x 900 Y DYN 017 152680533-152681446 7 DAQ 8 288x288 7x 20 Y CON 019 152690727-152691613 7 DAQ 8 224x224 18x 48 Y CON 021 152691741-152700223 7 DAQ 8 224x224 18x 48 Y CON 023 152700355-152701241 7 DAQ 8 224x224 18x 48 Y CON 025 152701409-152702257 7 DAQ 8 224x224 18x 48 Y CON STP076 027 152760735-152760927 7 DAQ 8 224x224 18x 48 Y CON 031 152770156-152771555 7 DAQ 8 224x224 18x 48 Y CON 035 152772018-152780055 7 DAQ 8 224x224 18x 48 Y CON 039 152781441-152782142 7 DAQ 8 224x224 18x 48 Y CON 043 152790932-152792120 7 DAQ 8 288x288 7x 20 Y CON STP077 047 152800824-152810514 22 DAQ 14 224x224 94x 257 Y DYN 051 152811250-152820939 22 DAQ 14 224x224 94x 257 Y DYN 055 152830823-152840515 22 DAQ 14 224x224 94x 257 Y DYN 059 152841317-152842106 22 DAQ 14 64x 64 328x 900 Y DYN 063 152850058-152850849 22 DAQ 14 64x 64 328x 900 Y DYN 067 152851211-152860858 23 DAQ 14 224x224 94x 257 Y DYN 071 152861633-152862222 23 DAQ 14 64x 64 328x 900 Y DYN STP078 (M)075 152870808-152880258 11 DAQ 10 256x256 51x 141 Y DYN 078 152881004-152890309 11 DAQ 10 192x288 73x 200 Y DYN ---------------------------------------------------------------------MTP022 /DATA/IMG/IMG_1529323_1532200__ZS.LBL ---------------------------------------------------------------------STP079 (M)001 152940822-152950431 22 DAQ 14 224x224 94x 257 Y DYN (M)005 152951153-152960809 22 DAQ 14 224x224 94x 257 Y DYN 009 152961429-152962054 3 CAL 14 192x192 15x 15 Y DYN 013 152970824-152980512 22 DAQ 14 224x224 94x 257 Y DYN 017 152981249-152990940 22 DAQ 14 224x224 94x 257 Y DYN 021 152991555-152992002 4 CAL 8 256x256 4x 11 Y CON 025 152992119-153000435 4 CAL 14 256x256 4x 11 Y DYN 029 153000635-153001242 11 DAQ 5 256x256 8x 8 X DYN STP080 032 153010719-153011336 4 CAL 10 256x256 4x 11 Y DYN 035 153011443-153020253 23 DAQ 14 384x384 7x 19 Y DYN 037 153020438-153021204 23 DAQ 14 384x384 7x 19 Y DYN 039 153021851-153030217 23 DAQ 14 384x384 7x 19 Y DYN 041 153030903-153031628 23 DAQ 14 384x384 7x 19 Y DYN 043 153040728-153050234 22 DAQ 14 512x512 5x 14 Y DYN 045 153050511-153051647 22 DAQ 14 512x512 5x 14 Y DYN (M)047 153060308-153061443 22 DAQ 14 512x512 5x 14 Y DYN 049 153070105-153071237 22 DAQ 14 512x512 5x 14 Y DYN STP081 051 153080751-153081507 4 CAL 14 256x256 4x 11 Y DYN 055 153081705-153082233 4 CAL 10 256x256 4x 11 Y DYN 058 153090125-153092139 22 DAQ 15 224x224 94x 257 Y DYN 062 153100309-153100800 22 DAQ 15 224x224 1x 1 Y DYN 066 153110835-153120810 14 DAQ 14 224x224 94x 94 X DYN 069 153121626-153131317 23 DAQ 14 224x224 94x 257 Y DYN 073 153132050-153141738 23 DAQ 14 224x224 94x 257 Y DYN STP082 077 153150747-153151635 22 DAQ 15 128x128 164x 450 Y DYN 081 153151858-153152100 22 DAQ 15 128x128 164x 450 Y DYN 085 153160617-153161336 4 CAL 15 256x256 4x 11 Y DYN (M)089 153180749-153181129 11 DAQ 9 64x 64 205x 562 Y DYN 092 153181303-153190409 11 DAQ 9 256x256 2x 155 Y DYN 095 153190436-153190437 4 CAL 14 256x256 4x 4 X DYN 098 153190635-153201136 4 CAL 14 256x256 82x 225 Y DYN 101 153201715-153210208 3 CAL 14 192x192 55x 150 Y DYN 104 153210850-153211142 3 CAL 14 128x128 20x 56 Y DYN ---------------------------------------------------------------------MTP023 /DATA/IMG/IMG_1532123_1535000__ZS.LBL ---------------------------------------------------------------------STP083 001 153220826-153222040 2 CAL 14 128x128 164x 450 Y DYN 004 153230117-153231821 2 CAL 14 128x128 164x 450 Y CON 008 153232023-153240800 2 CAL 4 128x128 164x 450 Y DYN 011 153241006-153242222 2 CAL 7 128x128 164x 450 Y DYN 014 153250817-153252009 2 CAL 9 128x128 164x 450 Y DYN 017 153261659-153270115 15 DAQ 9 256x256 23x 23 Y DYN 020 153270522-153280008 11 DAQ 10 288x288 36x 100 Y DYN STP084 023 153290842-153301255 3 CAL 14 256x256 82x 225 Y DYN 026 153302134-153310502 4 CAL 16 256x256 4x 11 Y DYN 030 153310654-153311410 4 CAL 15 256x256 4x 11 Y DYN 034 153311600-153311955 4 CAL 9 256x256 4x 11 Y DYN 038 153320731-153321905 11 DAQ 9 256x352 20x 55 Y DYN (M)041 153331201-153332330 11 DAQ 9 288x352 20x 55 Y DYN 044 153340352-153342128 25 DAQ 14 224x224 94x 257 Y DYN 048 153350401-153351632 2 CAL 16 128x128 164x 450 Y DYN STP085 051 153361007-153362211 2 CAL 1 128x128 164x 450 Y DYN 054 153370306-153371508 2 CAL 2 128x128 164x 450 Y DYN 057 153372006-153380804 2 CAL 3 128x128 164x 450 Y DYN 060 153381202-153381925 4 CAL 1 256x256 4x 11 Y DYN 064 153390809-153400148 25 DAQ 14 224x224 94x 257 Y DYN 068 153400803-153410138 25 DAQ 14 224x224 94x 257 Y DYN 072 153411327-153412247 25 DAQ 14 224x224 94x 257 Y DYN 076 153421234-153421950 4 CAL 15 256x256 4x 11 Y DYN STP086 080 153431335-153440044 2 CAL 5 128x128 164x 450 Y DYN 083 153440450-153442006 2 CAL 8 128x128 164x 450 Y CON 086 153442157-153450828 2 CAL 12 128x128 164x 450 Y DYN 089 153450942-153451919 25 DAQ 14 224x224 47x 129 Y DYN 093 153460744-153461318 11 DAQ 9 64x 64 205x 562 Y CON 097 153461448-153470755 11 DAQ 9 256x352 20x 55 Y DYN 100 153471209-153480859 11 DAQ 9 384x288 20x 55 Y DYN 103 153481552-153491101 11 DAQ 9 288x352 20x 55 Y DYN ---------------------------------------------------------------------MTP024 /DATA/IMG/IMG_1534923_1601300__ZS.LBL ---------------------------------------------------------------------STP087 001 153500722-153501606 4 CAL 11 256x256 4x 4 X DYN 004 153501709-153510030 4 CAL 2 256x256 4x 11 Y DYN 008 153510139-153510856 4 CAL 3 256x256 4x 11 Y DYN 012 153510953-153511524 4 CAL 4 256x256 4x 11 Y DYN 016 153511742-153520514 2 CAL 6 128x128 164x 450 Y DYN 019 153530746-153541131 4 CAL 15 512x512 4x 11 Y DYN 021 153541550-153550526 25 DAQ 5 224x224 94x 257 Y DYN (M)025 153551120-153561134 11 DAQ 5 256x256 82x 225 Y DYN STP088 028 153570809-153572343 25 DAQ 5 224x224 94x 257 Y DYN 032 153580437-153581928 25 DAQ 5 224x224 94x 257 Y DYN 036 153590111-153591633 25 DAQ 5 224x224 94x 257 Y DYN 040 153600801-153602253 25 DAQ 5 224x224 94x 257 Y DYN 044 153610414-153612126 25 DAQ 5 352x352 30x 82 Y DYN 048 153620207-153622009 25 DAQ 5 352x352 30x 82 Y DYN 052 153622354-153631635 25 DAQ 5 352x352 30x 82 Y DYN STP089 056 153640837-153641325 2 CAL 14 64x 64 328x 900 Y DYN 059 153641611-153642059 2 CAL 14 64x 64 328x 900 Y DYN 062 153642345-153650433 2 CAL 14 64x 64 328x 900 Y DYN 065 153650719-153651207 2 CAL 14 64x 64 328x 900 Y DYN 068 153651453-153651941 2 CAL 14 64x 64 328x 900 Y DYN 071 153652227-160010102 2 CAL 14 64x 64 328x 900 Y DYN 074 160010618-160012047 11 DAQ 14 128x128 164x 450 Y CON 077 160020822-160030301 11 DAQ 14 128x128 164x 450 Y CON 080 160030459-160032337 11 DAQ 14 128x128 164x 450 Y CON 083 160040119-160041353 11 DAQ 14 128x128 164x 450 Y CON 086 160041548-160050409 11 DAQ 14 128x128 164x 450 Y CON 089 160050605-160051828 11 DAQ 14 128x128 164x 450 Y CON STP090 092 160060825-160061338 25 DAQ 1 224x224 94x 257 Y DYN ---------------------------------------------------------------------MTP025 /DATA/IMG/IMG_1601223_1604100__ZS.LBL ---------------------------------------------------------------------STP091 001 160130750-160140934 4 CAL 15 512x512 2x 6 Y DYN 003 160141244-160142002 4 CAL 14 256x256 4x 11 Y DYN 007 160142248-160151750 14 DAQ 11 256x256 82x 225 Y DYN 010 160160759-160171935 11 DAQ 11 384x384 27x 75 Y DYN 013 160172134-160181638 14 DAQ 11 256x256 82x 225 Y DYN 016 160181933-160191439 14 DAQ 11 256x256 82x 225 Y DYN STP092 019 160200731-160201500 2 CAL 14 256x256 10x 10 Y DYN 022 160201801-160210329 11 DAQ 14 128x128 164x 450 Y CON 025 160210435-160211404 11 DAQ 14 128x128 164x 450 Y CON 028 160211519-160221230 14 DAQ 11 512x512 8x 22 Y DYN STP093 030 160270745-160280223 11 DAQ 11 416x448 14x 38 Y DYN 032 160280835-160290548 11 DAQ 11 224x224 47x 129 Y CON 035 160290641-160291205 4 CAL 11 256x256 4x 4 X DYN 038 160291241-160292100 11 DAQ 9 96x 96 246x 675 Y DYN 041 160300756-160302229 11 DAQ 11 224x224 47x 129 Y DYN (M)044 160310411-160311243 11 DAQ 9 96x 96 246x 675 Y DYN 047 160311709-160312253 11 DAQ 9 96x 96 246x 675 Y DYN 050 160320535-160321033 11 DAQ 9 96x 96 246x 675 Y DYN (M)053 160322008-160330218 11 DAQ 9 96x 96 246x 675 Y DYN (M)056 160330921-160331805 11 DAQ 9 96x 96 246x 675 Y DYN STP094 059 160340848-160351259 3 CAL 14 256x256 82x 225 Y DYN 062 160352216-160361516 3 CAL 14 256x256 41x 112 Y DYN 065 160370806-160380310 14 DAQ 11 256x256 82x 225 Y DYN 068 160380855-160381225 4 CAL 12 256x256 4x 4 X DYN 071 160381533-160391834 25 DAQ 2 256x256 82x 225 Y DYN 074 160400313-160401935 25 DAQ 2 256x256 41x 112 Y DYN ---------------------------------------------------------------------MTP026 /DATA/IMG/IMG_1604023_1606900__ZS.LBL ---------------------------------------------------------------------STP095 001 160410758-160410801 46 DAQ 1 256x256 24x 24 X DYN 002 160410936-160410938 46 DAQ 1 256x256 24x 24 X DYN 003 160411344-160420931 4 CAL 11 512x512 2x 6 Y DYN (M)005 160421244-160421742 11 DAQ 9 96x 96 246x 675 Y DYN 008 160430305-160431929 7 DAQ 10 256x256 82x 225 Y DYN 011 160440743-160450019 11 DAQ 9 320x320 33x 90 Y DYN (M)014 160450504-160452201 11 DAQ 9 320x320 33x 90 Y DYN (M)017 160460311-160461935 11 DAQ 9 320x320 33x 90 Y DYN 020 160470257-160472213 7 DAQ 10 384x384 20x 56 Y DYN STP096 023 160480728-160481120 4 CAL 1 256x256 4x 11 Y DYN 027 160481750-160490253 11 DAQ 9 96x 96 246x 675 Y DYN (M)030 160490707-160491353 11 DAQ 9 96x 96 246x 675 Y DYN 034 160510812-160520312 7 DAQ 7 256x256 82x 225 Y MAG 038 160532322-160541721 7 DAQ 7 256x256 82x 225 Y MAG STP097 040 160550728-160551106 4 CAL 1 256x256 4x 11 Y DYN 044 160551732-160561246 14 DAQ 11 256x256 82x 225 Y DYN (M)047 160562007-160570714 11 DAQ 9 96x192 123x 337 Y DYN 050 160571135-160572107 7 DAQ 7 256x256 41x 112 Y DYN (M)053 160580820-160590746 11 DAQ 9 320x320 33x 90 Y DYN 056 160592305-160600236 4 CAL 9 256x256 4x 4 X DYN (R)059 160600411-160600638 11 DAQ 9 128x128 82x 225 Y DYN 062 160600820-160610121 7 DAQ 7 256x256 82x 225 Y DYN 065 160610736-160611706 7 DAQ 7 256x256 41x 112 Y DYN STP098 068 160620831-160621731 11 DAQ 9 96x 96 246x 675 Y DYN 071 160622041-160630547 11 DAQ 9 256x256 4x 21 Y DYN 075 160650858-160651832 7 DAQ 7 256x256 41x 112 Y DYN 079 160652217-160660532 7 DAQ 1 256x256 8x 22 Y DYN 083 160660644-160661359 7 DAQ 1 256x256 8x 22 Y DYN 087 160661511-160662227 7 DAQ 1 256x256 8x 22 Y DYN 091 160662338-160670654 7 DAQ 1 256x256 8x 22 Y DYN (R)095 160670840-160671106 11 DAQ 9 128x128 82x 225 Y CON 098 160671229-160680810 25 DAQ 2 416x416 9x 26 Y DYN ---------------------------------------------------------------------MTP027 /DATA/IMG/IMG_1606823_1609700__ZS.LBL ---------------------------------------------------------------------STP099 001 160690821-160700703 14 DAQ 11 256x256 82x 225 Y DYN 004 160701506-160711346 14 DAQ 11 256x256 82x 225 Y DYN 007 160720949-160731510 11 DAQ 9 320x320 33x 90 Y DYN 010 160740124-160741823 7 DAQ 7 256x256 82x 225 Y DYN 013 160750109-160751816 7 DAQ 7 256x256 82x 225 Y DYN STP100 016 160761137-160761835 14 DAQ 1 64x 64 328x 900 Y DYN 019 160790830-160801325 14 DAQ 1 288x288 73x 200 Y DYN 022 160802234-160810530 14 DAQ 1 64x 64 328x 900 Y DYN 025 160810845-160811533 14 DAQ 1 64x 64 328x 900 Y DYN 028 160811900-160820153 14 DAQ 1 64x 64 328x 900 Y DYN 031 160820511-160821201 14 DAQ 1 64x 64 328x 900 Y DYN 034 160821524-160822215 14 DAQ 1 64x 64 328x 900 Y DYN (R)035 160830724-160831658 14 DAQ 1 64x 64 328x 900 Y DYN (R)036 160831746-160840326 14 DAQ 1 64x 64 328x 900 Y DYN STP101 037 160840418-160841103 14 DAQ 1 64x 64 328x 900 Y DYN (R)039 160841430-160842357 14 DAQ 1 64x 64 328x 900 Y DYN 040 160850235-160851027 14 DAQ 1 64x 64 328x 900 Y DYN STP102 043 160932211-160941944 7 DAQ 7 256x256 82x 225 Y DYN 047 160950205-160951108 4 CAL 1 256x256 4x 11 Y DYN 050 160951333-160951734 14 DAQ 1 512x384 22x 60 Y DYN ---------------------------------------------------------------------MTP028 /DATA/IMG/IMG_1609623_1612500__ZS.LBL ---------------------------------------------------------------------STP103 (R)000 160970654-160971508 12 DAQ 14 64x 64 328x 900 Y DYN 001 160971733-160980027 14 DAQ 1 64x 64 328x 900 Y DYN 005 160980401-160981043 14 DAQ 1 64x 64 328x 900 Y DYN 009 160981425-160982118 14 DAQ 1 64x 64 328x 900 Y DYN 013 160990050-160990747 14 DAQ 1 64x 64 328x 900 Y DYN 017 160991113-160991811 14 DAQ 1 64x 64 328x 900 Y DYN 021 161000824-161001702 11 DAQ 9 96x 96 246x 675 Y DYN 025 161002332-161010912 11 DAQ 9 96x 96 246x 675 Y DYN 029 161011719-161020726 13 DAQ 1 160x160 131x 360 Y DYN 033 161021818-161031347 22 DAQ 1 224x224 94x 257 Y DYN STP104 037 161040923-161041651 4 CAL 1 256x256 4x 11 Y DYN 041 161041918-161051225 7 DAQ 7 256x256 82x 225 Y DYN 045 161051931-161071346 14 DAQ 1 480x352 25x 65 Y MAG 047 161080826-161090855 14 DAQ 2 256x256 41x 112 Y DYN 050 161091714-161101030 14 DAQ 2 256x256 41x 112 Y DYN 054 161101249-161102307 14 DAQ 2 256x256 41x 112 Y DYN STP105 058 161110811-161110813 44 DAQ 1 256x256 24x 24 X DYN 059 161111122-161111125 44 DAQ 1 256x256 24x 24 X DYN 060 161120228-161121850 14 DAQ 1 192x320 41x 110 Y DYN 064 161130015-161131656 14 DAQ 1 256x256 38x 103 Y DYN 068 161131859-161142307 14 DAQ 1 320x320 66x 180 Y MAG 071 161150744-161150748 14 DAQ 1 256x256 41x 112 Y DYN 075 161160709-161161301 14 DAQ 1 64x 64 328x 900 Y DYN 079 161161616-161162216 14 DAQ 1 64x 64 328x 900 Y DYN 083 161170055-161170503 14 DAQ 1 64x 64 328x 900 Y DYN 087 161170713-161171058 11 DAQ 9 64x 64 328x 900 Y DYN 091 161171542-161172003 11 DAQ 9 64x 64 328x 900 Y DYN STP106 095 161192023-161210254 14 DAQ 2 480x352 25x 65 Y MAG 097 161220706-161221327 14 DAQ 1 256x256 8x 22 Y DYN 101 161221431-161222055 14 DAQ 1 256x256 8x 22 Y DYN 105 161222156-161230437 14 DAQ 1 256x256 8x 22 Y DYN 109 161230521-161231152 14 DAQ 1 256x256 8x 22 Y DYN ---------------------------------------------------------------------MTP029 /DATA/IMG/IMG_1612423_1615300__ZS.LBL ---------------------------------------------------------------------STP107 001 161250835-161251510 14 DAQ 8 64x 64 328x 900 Y DYN 005 161251859-161260229 14 DAQ 1 64x 64 328x 900 Y MAG 011 161281536-161282303 4 CAL 1 256x256 4x 11 Y DYN 015 161290729-161290733 14 DAQ 1 96x 96 219x 600 Y DYN 019 161291740-161300008 14 DAQ 1 96x 96 219x 600 Y DYN 023 161300313-161300935 14 DAQ 1 96x 96 219x 600 Y DYN 027 161301244-161301907 14 DAQ 1 96x 96 219x 600 Y DYN 031 161302216-161310437 14 DAQ 1 96x 96 219x 600 Y DYN 035 161310748-161311415 14 DAQ 1 96x 96 219x 600 Y DYN 039 161311705-161312201 14 DAQ 1 96x 96 219x 600 Y DYN STP108 043 161321209-161331032 4 CAL 15 512x512 2x 6 Y DYN 045 161331353-161341249 13 DAQ 1 288x288 73x 200 Y MAG 048 161341545-161351442 13 DAQ 1 288x288 73x 200 Y MAG 051 161351649-161352305 4 CAL 2 256x256 4x 11 Y DYN 055 161360804-161361652 14 DAQ 1 128x128 164x 450 Y MAG 062 161361823-161370302 14 DAQ 1 128x128 164x 450 Y MAG 069 161370432-161371319 14 DAQ 1 128x128 164x 450 Y MAG 076 161371449-161371707 14 DAQ 1 128x128 164x 450 Y MAG 083 161372344-161380731 11 DAQ 9 96x 96 219x 600 Y DYN 087 161381229-161382015 11 DAQ 9 96x 96 219x 600 Y DYN 091 161382324-161390946 15 DAQ 1 256x256 23x 23 Y DYN STP109 095 161391727-161400104 4 CAL 1 256x256 4x 11 Y DYN 099 161400235-161400623 4 CAL 8 256x256 4x 11 Y DYN 103 161400824-161401005 14 DAQ 8 32x 32 656x 1800 Y DYN 107 161401015-161401044 14 DAQ 8 32x 32 656x 1800 Y CON 111 161401227-161401907 14 DAQ 8 64x 64 328x 900 Y DYN 115 161402054-161410040 4 CAL 8 256x256 4x 11 Y DYN 119 161410241-161411518 7 DAQ 1 256x256 8x 22 Y MAG 126 161411624-161420502 7 DAQ 1 256x256 8x 22 Y MAG 133 161420608-161421847 7 DAQ 1 256x256 8x 22 Y MAG 140 161421952-161422319 7 DAQ 1 256x256 8x 22 Y MAG 147 161430810-161431750 14 DAQ 1 128x128 164x 450 Y DYN 151 161432230-161441907 14 DAQ 1 256x256 82x 225 Y MAG STP110 158 161460740-161470608 4 CAL 15 512x512 2x 6 Y DYN 160 161471242-161471932 14 DAQ 1 256x256 82x 225 Y MAG 167 161482250-161490749 14 DAQ 1 128x128 164x 450 Y MAG 174 161490918-161491757 14 DAQ 1 128x128 164x 450 Y MAG ---------------------------------------------------------------------MTP030 /DATA/IMG/IMG_1615223_1618100__ZS.LBL ---------------------------------------------------------------------STP111 001 161530731-161531615 14 DAQ 1 128x128 164x 450 Y MAG 008 161531720-161540052 14 DAQ 1 128x128 164x 450 Y MAG 015 161540401-161541110 14 DAQ 4 128x128 164x 450 Y MAG 022 161541249-161542001 14 DAQ 4 128x128 164x 450 Y MAG 029 161542137-161550446 14 DAQ 4 128x128 164x 450 Y MAG 036 161550625-161551335 14 DAQ 4 128x128 164x 450 Y MAG 043 161551513-161552222 14 DAQ 4 128x128 164x 450 Y MAG 050 161560001-161560709 14 DAQ 4 128x128 164x 450 Y MAG 057 161560849-161561558 14 DAQ 4 128x128 164x 450 Y MAG 064 161561736-161562242 14 DAQ 4 96x 96 219x 600 Y MAG 071 161570725-161571651 14 DAQ 4 160x160 131x 360 Y MAG 078 161571831-161580356 14 DAQ 4 160x160 131x 360 Y MAG 085 161580537-161581504 14 DAQ 4 160x160 131x 360 Y MAG 092 161581643-161590208 14 DAQ 4 160x160 131x 360 Y MAG 099 161590349-161591317 14 DAQ 4 160x160 131x 360 Y MAG 106 161591434-161591852 4 CAL 4 256x256 4x 11 Y DYN STP112 110 161600722-161601325 14 DAQ 4 128x128 164x 450 Y MAG 117 161601629-161602257 14 DAQ 4 128x128 164x 450 Y MAG 124 161610137-161611024 14 DAQ 1 128x128 164x 450 Y MAG 131 161611210-161612057 14 DAQ 1 128x128 164x 450 Y MAG 138 161612231-161620509 14 DAQ 1 128x128 164x 450 Y MAG 145 161620956-161622305 14 DAQ 4 224x224 94x 257 Y MAG 152 161630501-161631223 14 DAQ 4 128x128 164x 450 Y MAG 159 161640657-161641358 14 DAQ 4 128x128 164x 450 Y MAG 166 161641707-161650013 14 DAQ 4 128x128 164x 450 Y MAG 173 161650144-161650600 4 CAL 4 256x256 4x 11 Y DYN 177 161651014-161651819 3 CAL 4 128x128 164x 450 Y DYN 181 161652053-161660314 14 DAQ 4 128x128 164x 450 Y MAG 188 161661451-161661454 44 DAQ 1 256x256 24x 24 X DYN 189 161661619-161662050 44 DAQ 4 256x256 15x 15 X DYN STP113 193 161670731-161671605 14 DAQ 1 128x128 164x 450 Y MAG 200 161671748-161680226 14 DAQ 1 128x128 164x 450 Y MAG 207 161680345-161681352 4 CAL 4 448x448 2x 6 Y DYN 209 161682147-161690432 14 DAQ 4 128x128 164x 450 Y MAG 216 161690635-161691111 14 DAQ 4 128x128 164x 450 Y MAG 223 161691523-161692231 14 DAQ 4 128x128 164x 450 Y MAG 230 161700011-161700717 14 DAQ 4 128x128 164x 450 Y MAG 237 161700859-161701611 14 DAQ 4 128x128 164x 450 Y MAG 244 161701744-161702221 11 DAQ 9 96x 96 219x 600 Y DYN 248 161710723-161711431 14 DAQ 4 128x128 164x 450 Y MAG 255 161711612-161712320 14 DAQ 4 128x128 164x 450 Y MAG 262 161720059-161720811 14 DAQ 4 128x128 164x 450 Y MAG 269 161720934-161721301 14 DAQ 8 128x128 51x 141 Y MAG 276 161721310-161721323 14 DAQ 8 32x 32 205x 562 Y CON 280 161721438-161721806 14 DAQ 8 128x128 51x 141 Y MAG 287 161721941-161732236 14 DAQ 4 384x384 27x 75 Y MAG STP114 290 161740740-161741458 14 DAQ 4 128x128 164x 450 Y MAG 297 161741637-161742359 14 DAQ 4 128x128 164x 450 Y MAG 304 161750119-161751435 4 CAL 8 512x512 2x 6 Y DYN 306 161760029-161760343 11 DAQ 9 96x 96 219x 600 Y DYN 310 161760727-161761443 14 DAQ 2 128x128 164x 450 Y MAG 317 161761615-161762114 14 DAQ 4 96x 96 219x 600 Y MAG 324 161770143-161772306 14 DAQ 4 512x512 122x 335 Y MAG 326 161780800-161782033 14 DAQ 4 224x224 94x 257 Y MAG 333 161790231-161790913 12 DAQ 4 128x128 164x 450 Y MAG 340 161791142-161800320 14 DAQ 4 256x256 82x 225 Y MAG 347 161800740-161801836 14 DAQ 4 192x192 109x 300 Y MAG ---------------------------------------------------------------------MTP031 /DATA/IMG/IMG_1618023_1620900__ZS.LBL ---------------------------------------------------------------------STP115 001 161810729-161811410 4 CAL 2 256x256 4x 11 Y DYN 005 161811937-161820517 4 CAL 4 448x448 2x 6 Y DYN 007 161821310-161821358 2 CAL 5 256x 32 10x 27 X DYN 011 161821524-161821611 2 CAL 5 256x 32 10x 27 X DYN 015 161821738-161821824 2 CAL 5 256x 32 10x 27 X DYN 019 161821952-161822037 2 CAL 5 256x 32 10x 27 X DYN 023 161822206-161822250 2 CAL 5 256x 32 10x 27 X DYN 027 161830021-161830104 14 DAQ 2 32x 32 656x 1800 Y MAG 034 161830159-161831101 14 DAQ 2 256x256 41x 112 Y MAG 047 161840937-161842221 14 DAQ 2 256x256 1x 3 Y MAG 054 161850719-161850932 14 DAQ 8 128x128 20x 56 Y MAG 061 161850938-161850946 14 DAQ 8 32x 32 82x 225 Y CON 065 161851056-161851309 14 DAQ 8 128x128 20x 56 Y MAG 072 161851415-161851747 4 CAL 8 256x256 2x 6 Y DYN 074 161852132-161860554 14 DAQ 2 128x128 164x 450 Y MAG 081 161860745-161861330 14 DAQ 4 128x128 164x 450 Y MAG 088 161861638-161872148 14 DAQ 2 448x224 47x 129 Y MAG STP116 090 161880733-161890431 14 DAQ 2 288x288 36x 100 Y MAG 096 161890520-161892240 14 DAQ 2 288x288 9x 25 Y MAG 102 161900021-161902300 14 DAQ 2 256x256 82x 225 Y MAG 109 161910042-161912318 14 DAQ 2 256x256 82x 225 Y MAG 116 161920717-161922012 14 DAQ 4 320x320 16x 45 Y MAG 121 161922120-161930656 4 CAL 8 448x448 2x 6 Y DYN 123 161931513-161940505 14 DAQ 4 192x192 109x 300 Y MAG 130 161940625-161940837 11 DAQ 9 96x 96 219x 600 Y DYN 134 161941354-161941852 11 DAQ 9 96x 96 219x 600 Y DYN STP117 138 161950709-161950753 2 CAL 5 256x 32 10x 27 X DYN 142 161950923-161951008 2 CAL 5 256x 32 10x 27 X DYN 146 161951138-161951223 2 CAL 5 256x 32 10x 27 X DYN 150 161951352-161951438 2 CAL 5 256x 32 10x 27 X DYN 154 161951606-161951652 2 CAL 5 256x 32 10x 27 X DYN 158 161951820-161951907 2 CAL 5 256x 32 10x 27 X DYN 162 161952034-161952122 2 CAL 5 256x 32 10x 27 X DYN 166 161952315-161960832 14 DAQ 3 128x128 164x 450 Y MAG 173 161961119-161961556 11 DAQ 9 96x 96 219x 600 Y DYN 177 161961742-161962219 11 DAQ 9 96x 96 219x 600 Y DYN 181 161970029-161981504 14 DAQ 3 480x480 25x 67 Y MAG 183 161990740-161992211 14 DAQ 3 480x480 22x 60 Y MAG 185 162010448-162011515 12 DAQ 4 128x128 164x 450 Y MAG 192 162011642-162012306 4 CAL 3 256x256 4x 11 Y DYN STP118 196 162020719-162020849 14 DAQ 8 128x128 20x 56 Y DYN 200 162020924-162020931 14 DAQ 8 32x 32 82x 225 Y CON 204 162020944-162021114 14 DAQ 8 128x128 20x 56 Y DYN 208 162021325-162030352 14 DAQ 4 512x256 10x 28 Y MAG 212 162030426-162031942 14 DAQ 4 512x256 10x 28 Y MAG 216 162032109-162040639 14 DAQ 3 128x128 164x 450 Y MAG 223 162040957-162041720 13 DAQ 4 128x128 164x 450 Y MAG 230 162041900-162050223 13 DAQ 4 128x128 164x 450 Y MAG 237 162050403-162051127 13 DAQ 4 128x128 164x 450 Y MAG 244 162051306-162052031 13 DAQ 4 128x128 164x 450 Y MAG 251 162060716-162061733 14 DAQ 4 256x256 20x 56 Y MAG 258 162061853-162070514 14 DAQ 4 256x256 15x 42 Y MAG 265 162071220-162081519 3 CAL 7 384x384 55x 150 X DYN ---------------------------------------------------------------------MTP032 /DATA/IMG/IMG_1620823_1622300__ZS.LBL ---------------------------------------------------------------------STP119 001 162090740-162091806 14 DAQ 3 256x256 10x 28 Y MAG 008 162092142-162100953 14 DAQ 3 256x256 10x 28 Y MAG 015 162101148-162110031 14 DAQ 3 256x256 10x 28 Y MAG 022 162110150-162111542 14 DAQ 3 256x256 10x 28 Y MAG 029 162111626-162120752 14 DAQ 3 288x288 2x 5 Y MAG 034 162120835-162122306 14 DAQ 3 288x288 2x 5 Y MAG 039 162130724-162131448 14 DAQ 4 128x128 164x 450 Y MAG 046 162131606-162142123 14 DAQ 4 256x256 1x 1 Y MAG 053 162142216-162150234 2 CAL 1 96x 96 246x 675 Y DYN 057 162150316-162150732 2 CAL 2 96x 96 246x 675 Y DYN 061 162150814-162151226 2 CAL 3 96x 96 246x 675 Y DYN 065 162151250-162151605 2 CAL 3 96x 96 246x 675 Y DYN 069 162151646-162152306 3 CAL 7 256x256 41x 112 X DYN STP120 072 162160706-162161115 4 CAL 8 256x256 4x 11 Y DYN 076 162161442-162170031 4 CAL 4 448x448 2x 6 Y DYN 078 162170812-162171440 4 CAL 3 256x256 4x 11 Y DYN 082 162172030-162180634 14 DAQ 4 256x256 15x 42 Y MAG 089 162180807-162181205 14 DAQ 2 128x128 164x 450 Y MAG 096 162181922-162192325 14 DAQ 3 256x256 82x 225 Y MAG 103 162200731-162201321 14 DAQ 3 128x128 164x 450 Y MAG 110 162201842-162210405 14 DAQ 3 128x128 164x 450 Y MAG 117 162210531-162210815 14 DAQ 5 96x 96 109x 300 Y DYN 121 162210852-162210909 14 DAQ 5 32x 32 328x 900 Y CON 125 162211042-162211336 14 DAQ 5 96x 96 109x 300 Y DYN 129 162211437-162211827 4 CAL 5 256x256 4x 4 X DYN 133 162212153-162222239 14 DAQ 3 320x320 20x 56 Y MAG ---------------------------------------------------------------------MTP033 /DATA/IMG/IMG_1622223_1624607__ZS.LBL ---------------------------------------------------------------------STP121 001 162230134-162230554 4 CAL 4 256x256 4x 11 Y DYN 004 162231316-162231829 13 DAQ 4 96x 96 219x 600 Y MAG 010 162232049-162250621 13 DAQ 4 416x416 11x 29 Y MAG 012 162251302-162251820 14 DAQ 5 96x 96 219x 600 Y DYN 015 162252017-162260621 14 DAQ 5 352x352 7x 20 Y DYN 017 162261259-162261447 11 DAQ 9 64x 96 90x 247 Y DYN 020 162261453-162261544 11 DAQ 9 64x 96 90x 247 Y CON 023 162261718-162261906 11 DAQ 9 64x 96 90x 247 Y DYN 026 162262042-162270825 11 DAQ 9 256x256 51x 141 Y DYN 029 162271033-162271052 11 DAQ 9 32x 32 410x 1125 Y CON 032 162271125-162271357 11 DAQ 9 64x 64 205x 562 Y DYN 035 162271519-162280021 4 CAL 9 448x448 2x 6 Y DYN STP122 037 162281300-162281947 14 DAQ 4 128x128 164x 450 Y MAG 044 162282233-162290554 14 DAQ 4 128x128 164x 450 Y MAG 051 162291221-162292218 14 DAQ 4 320x320 8x 22 Y MAG 056 162292253-162300855 14 DAQ 4 320x320 8x 22 Y MAG 061 162300929-162301922 14 DAQ 4 320x320 8x 22 Y MAG 066 162301956-162310544 14 DAQ 4 320x320 8x 22 Y MAG 071 162311231-162312022 14 DAQ 4 128x128 164x 450 Y MAG 078 162312204-162320558 14 DAQ 4 128x128 164x 450 Y MAG 085 162321221-162322220 14 DAQ 4 320x320 8x 22 Y MAG 090 162322254-162330858 14 DAQ 4 320x320 8x 22 Y MAG 095 162330933-162331931 14 DAQ 4 320x320 8x 22 Y MAG STP123 104 162341230-162341942 14 DAQ 4 128x128 164x 450 Y MAG 111 162342117-162350422 14 DAQ 4 128x128 164x 450 Y MAG 118 162351235-162351932 14 DAQ 4 128x128 164x 450 Y MAG 125 162352123-162360431 14 DAQ 4 128x128 164x 450 Y MAG 132 162360612-162361313 14 DAQ 4 128x128 164x 450 Y MAG 139 162361500-162362215 14 DAQ 4 128x128 164x 450 Y MAG 146 162362246-162370603 14 DAQ 4 192x192 55x 150 Y MAG 153 162371228-162371846 14 DAQ 4 128x128 164x 450 Y MAG (M)160 162372116-162380430 14 DAQ 4 128x128 164x 450 Y MAG 167 162381235-162381930 14 DAQ 4 128x128 164x 450 Y MAG 174 162382123-162390423 14 DAQ 4 128x128 164x 450 Y MAG 181 162390611-162391251 14 DAQ 4 128x128 164x 450 Y MAG 188 162391459-162392029 14 DAQ 4 128x128 164x 450 Y MAG 195 162392236-162400149 14 DAQ 4 256x128 41x 112 Y MAG 202 162401214-162401403 11 DAQ 9 64x 96 90x 247 Y DYN 205 162401425-162401516 11 DAQ 9 64x 96 90x 247 Y CON 208 162401633-162401821 11 DAQ 9 64x 96 90x 247 Y DYN 211 162401950-162410404 14 DAQ 4 128x128 164x 450 Y MAG 218 162411227-162420410 14 DAQ 4 448x224 47x 129 Y MAG 222 162420801-162421441 14 DAQ 4 128x128 164x 450 Y MAG 229 162421610-162422250 14 DAQ 4 128x128 164x 450 Y MAG 236 162430013-162430248 11 DAQ 9 64x 64 369x 1012 Y DYN 239 162430255-162430316 11 DAQ 9 32x 32 737x 2025 Y CON 242 162430440-162430607 11 DAQ 9 32x 32 737x 2025 Y DYN STP124 245 162431210-162431617 4 CAL 4 256x256 4x 11 Y DYN 248 162431708-162440028 4 CAL 9 256x256 4x 11 Y DYN 251 162440114-162440633 11 DAQ 9 128x128 102x 281 Y DYN (M)254 162441247-162450940 14 DAQ 4 256x512 41x 112 Y MAG 258 162451035-162460430 14 DAQ 4 256x512 41x 112 Y MAG ---------------------------------------------------------------------MTP034 /DATA/IMG/IMG_1624607_1627007__ZS.LBL ---------------------------------------------------------------------STP125 001 162461222-162470615 14 DAQ 4 512x384 20x 56 Y MAG 003 162471229-162481150 14 DAQ 4 512x416 25x 69 Y MAG 005 162481300-162482022 14 DAQ 4 128x128 164x 450 Y MAG 012 162482233-162490629 14 DAQ 4 128x128 164x 450 Y MAG STP126 019 162491232-162492032 14 DAQ 4 128x128 164x 450 Y MAG 026 162492213-162500617 14 DAQ 4 128x128 164x 450 Y MAG 033 162501242-162502211 14 DAQ 4 128x256 82x 225 Y MAG 040 162510005-162511154 14 DAQ 4 128x512 41x 112 Y MAG 047 162511259-162520635 14 DAQ 4 416x416 25x 69 Y MAG 049 162521223-162530635 14 DAQ 4 448x384 32x 88 Y DYN 051 162531235-162531943 14 DAQ 4 128x128 164x 450 Y MAG 058 162532117-162540426 14 DAQ 4 128x128 164x 450 Y MAG 065 162540559-162541308 14 DAQ 4 128x128 164x 450 Y MAG 072 162541441-162542150 14 DAQ 4 128x128 164x 450 Y MAG 079 162542323-162550631 14 DAQ 4 128x128 164x 450 Y MAG STP127 086 162551211-162551555 4 CAL 4 256x256 4x 11 Y DYN 090 162551739-162552255 4 CAL 5 256x256 4x 11 Y DYN 094 162560035-162560635 4 CAL 3 256x256 4x 11 Y DYN 098 162561226-162561450 14 DAQ 1 64x 64 164x 450 Y MAG 105 162561519-162561535 14 DAQ 1 32x 32 328x 900 Y CON 108 162561604-162561847 14 DAQ 1 64x 64 164x 450 Y MAG 115 162562008-162570055 14 DAQ 4 128x128 82x 225 Y MAG 122 162570239-162570401 11 DAQ 9 64x 64 184x 506 Y DYN 125 162570406-162570415 11 DAQ 9 32x 32 369x 1012 Y CON 128 162570441-162570615 11 DAQ 9 64x 64 184x 506 Y DYN 131 162570725-162570923 14 DAQ 5 96x 96 109x 300 Y DYN 135 162570929-162570939 14 DAQ 5 32x 32 328x 900 Y CON 139 162571021-162571218 14 DAQ 5 96x 96 109x 300 Y DYN 143 162571408-162572039 14 DAQ 4 128x128 164x 450 Y MAG 150 162572257-162580518 14 DAQ 4 128x128 164x 450 Y MAG 157 162581220-162581258 2 CAL 5 224x 32 10x 27 X DYN 161 162581426-162581505 2 CAL 5 224x 32 10x 27 X DYN 165 162581633-162581712 2 CAL 5 224x 32 10x 27 X DYN 169 162581839-162581919 2 CAL 5 224x 32 10x 27 X DYN 173 162582045-162582126 2 CAL 5 224x 32 10x 27 X DYN 177 162582251-162582333 2 CAL 5 224x 32 10x 27 X DYN 181 162590157-162590239 2 CAL 5 224x 32 10x 27 X DYN 191 162601838-162610206 14 DAQ 4 128x128 164x 450 Y MAG 198 162621603-162622129 14 DAQ 4 96x 96 219x 600 Y MAG 205 162622325-162630450 14 DAQ 4 96x 96 219x 600 Y MAG 212 162630646-162631454 3 CAL 7 224x224 47x 129 X DYN 216 162631802-162632016 14 DAQ 4 64x 64 205x 562 Y MAG 223 162632051-162632110 14 DAQ 4 32x 32 410x 1125 Y CON 226 162632134-162632326 14 DAQ 4 64x 64 205x 562 Y MAG 233 162640037-162640423 4 CAL 4 256x256 4x 11 Y DYN STP128 237 162641614-162642045 14 DAQ 4 128x128 41x 112 Y MAG 244 162642052-162642127 14 DAQ 4 64x 64 82x 225 Y CON 247 162661418-162670115 11 DAQ 9 256x256 46x 127 Y DYN 250 162670123-162670137 11 DAQ 9 32x 32 369x 1012 Y CON 253 162670158-162670418 11 DAQ 9 64x 64 184x 506 Y DYN 256 162670453-162670536 2 CAL 5 224x 32 10x 27 X DYN 260 162690912-162691328 14 DAQ 4 128x128 82x 225 Y MAG 267 162691333-162691347 14 DAQ 4 32x 32 328x 900 Y CON ---------------------------------------------------------------------MTP035 /DATA/IMG/IMG_1627006_1627309__ZS.LBL ---------------------------------------------------------------------STP129 001 162701426-162702126 14 DAQ 4 128x128 164x 450 Y MAG 007 162702352-162710740 14 DAQ 4 128x128 164x 450 Y MAG 013 162710918-162711710 14 DAQ 4 128x128 164x 450 Y MAG 019 162711843-162712308 14 DAQ 4 96x 96 219x 600 Y MAG 025 162720743-162721827 4 CAL 8 512x512 1x 3 Y DYN 027 162721857-162730533 4 CAL 8 512x512 1x 3 Y DYN ---------------------------------------------------------------------(R) denotes that the image has been reconstructed from line scans (M) indicates that the image has an associated particle mask file ---------------------------------------------------------------------
Instrument MIDAS
Temporal Coverage 2014-01-21T00:00:00Z/2016-09-29T00:00:00Z
Version V2.0
Mission Description TABLE OF CONTENTS ---------------------------------- = ROSETTA Mission Overview = ROSETTA Mission Objectives - Science Objectives = Mission Profile = Mission Phases Overview - Mission Phase Schedule - Solar Conjunctions/Oppositions - Payload Checkouts = Mission Phases Description - Launch phase (LEOP) - Commissioning phase - Cruise phase 1 - Earth swing-by 1 - Cruise phase 2 (and Deep Impact) - Mars swing-by - Cruise phase 3 - Earth swing-by 2 - Cruise phase 4 (splitted in 4-1 and 4-2) - Steins flyby - Earth swing-by 3 - Cruise phase 5 - Lutetia flyby - Rendez-Vous Manoeuver 1 - Cruise phase 6 - Rendez-Vous Manoeuver 2 - Near comet drift (NCD) phase - Approach phase - Lander delivery and relay phase - Escort phase - Near perihelion phase - Extended mission = Orbiter Experiments - ALICE - CONSERT - COSIMA - GIADA - MIDAS - MIRO - OSIRIS - ROSINA - RPC - RSI - VIRTIS - SREM = LANDER (PHILAE) - Science Objectives - Lander Experiments = Ground Segment - Rosetta Ground Segment - Rosetta Science Operations Center - Rosetta Mission Operations Center - Rosetta Lander Ground Segment - Lander Control Center - Science Operations and Navigation Center - Rosetta Scientific Data Archive = Acronyms ROSETTA Mission Overview ===================================================================== The ROSETTA mission is an interplanetary mission whose main objectives are the rendezvous and in-situ measurements of the comet 67P/Churyumov-Gerasimenko, scheduled for 2014/2015. The spacecraft carries a Rosetta Lander, named Philae, to the nucleus and deploys it onto its surface. A brief description of the mission and its objectives can be found in GLASSMEIERETAL2007A. A detailed description of the mission analysis can be found in the ROSETTA User Manual RO-DSS-MA-1001, and the flight Operations Plan RO-ESC-PL-5000. On its long way to the comet nucleus after a Launch by Ariane 5 P1+ in March 2004, the ROSETTA spacecraft orbited the Sun for one year until it returned to Earth for the first swing-by. The planet Mars was reached in February 2007, about 3 years after launch. In November 2007 a second Earth swing-by took place and a third one in November 2009. Two asteroid flybys (2867 Steins and 21 Lutetia) were performed on the way to the comet. These two asteroids had been selected at the Science Working Team meeting on 11th March 2004 among all the available candidate asteroids, depending on the scientific interest and the propellant required for the correction manoeuvre. Around the aphelion of its orbit, which is 5.3 AU from the Sun, the spacecraft has been in a spinning hibernation mode for about 2.5 years. Rosetta rendezvoused with comet 67P/Churyumov-Gerasimenko in August 2014. The Philae lander was deployed to the surface of the comet on 12 November 2014. The end of the nominal mission is planned in December 2015. The mission has been extended to 30th September 2016. The Mission Phase Schedule can be found below based on the official mission calendar. For archive purpose, we used a slightly updated calendar splitting the escort and extension phases. Below we summarise the phases used by the team for archive purpose: MISSION_PHASE_NAME | Abbn | Start date | End date | -------------------------------------------------------------- GROUND | GRND | *** | 2019-09-30 | LAUNCH | LEOP | 2004-03-03 | 2004-03-04 | COMMISSIONING 1 | CVP1 | 2004-03-05 | 2004-06-06 | CRUISE 1 | CR1 | 2004-06-07 | 2004-09-05 | COMMISSIONING 2 | CVP2 | 2004-09-06 | 2004-10-16 | EARTH SWING-BY 1 | EAR1 | 2004-10-17 | 2005-04-04 | CRUISE 2 | CR2 | 2005-04-05 | 2006-07-28 | MARS SWING-BY | MARS | 2006-07-29 | 2007-05-28 | CRUISE 3 | CR3 | 2007-05-29 | 2007-09-12 | EARTH SWING-BY 2 | EAR2 | 2007-09-13 | 2008-01-27 | CRUISE 4-1 | CR4A | 2008-01-28 | 2008-08-03 | STEINS FLY-BY | AST1 | 2008-08-04 | 2008-10-05 | CRUISE 4-2 | CR4B | 2008-10-06 | 2009-09-13 | EARTH SWING-BY 3 | EAR3 | 2009-09-14 | 2009-12-13 | CRUISE 5 | CR5 | 2009-12-14 | 2010-05-16 | LUTETIA FLY-BY | AST2 | 2010-05-17 | 2010-09-03 | RENDEZVOUS MANOEUVRE 1 | RVM1 | 2010-09-04 | 2011-06-07 | CRUISE 6 | CR6 | 2011-06-08 | 2014-01-20 | PRELANDING | PRL | 2014-01-21 | 2014-11-19 | COMET ESCORT 1 | ESC1 | 2014-11-20 | 2015-03-10 | COMET ESCORT 2 | ESC2 | 2015-03-11 | 2015-06-30 | COMET ESCORT 3 | ESC3 | 2015-07-01 | 2015-10-21 | COMET ESCORT 4 | ESC4 | 2015-10-22 | 2015-12-31 | ROSETTA EXTENSION 1 | EXT1 | 2016-01-01 | 2016-04-05 | ROSETTA EXTENSION 2 | EXT2 | 2016-04-06 | 2016-06-30 | ROSETTA EXTENSION 3 | EXT3 | 2016-07-01 | 2016-09-30 | -------------------------------------------------------------- For the Lander, the Cruise Phase data sets followed the same filenaming but the Comet phase has been split differently: MISSION_PHASE_NAME | Abbn| Start date | End date | ---------------------------------------------------------------------- POST HIBERNATION | PHC | 2014-04-09T08:15:25 | 2014-04-23T15:45:13 | COMMISSIONING | | | | ---------------------------------------------------------------------- PRE DELIVERY | PDCS| 2014-07-13T14:42:56 | 2014-10-17T20:31:20 | CALIB SCIENCE | | | | ---------------------------------------------------------------------- SEPARATION DESCENT| SDL | 2014-11-12T08:35:02 | 2014-11-12T15:34:04 | LANDING | | | | ---------------------------------------------------------------------- REBOUNDS | RBD | 2014-11-12T15:34:05 | 2014-11-12T17:30:20 | ---------------------------------------------------------------------- FIRST SCIENCE | FSS | 2014-11-12T17:30:21 | 2014-11-15T01:00:00 | SEQUENCE | | | | ---------------------------------------------------------------------- Please note: ------------ The ROSETTA spacecraft was originally designed for a mission to the comet 46 P/Wirtanen to be launched in January 2003. Due to a delay of the launch a new comet (67P/Churyumov-Gerasimenko) had been selected by the Science Working Team on 3rd-4th April 2003. The compliance of the design was checked and where necessary adapted for this new mission. Therefore in the following all the details and characteristics for this new mission are used. ROSETTA Mission Objectives ===================================================================== The scientific objectives of the ROSETTA mission can be considered from three main viewpoints: First of all, comets and asteroids are fully-fledged members of our solar system, which means, that they are objects of intrinsic interest to planetary scientists. The level of investigations conducted on these bodies is therefore far below that achieved for the other objects of the solar system. The study of the small solar-system bodies arguably represents the last major gap in the tremendous worldwide effort that has been made to reveal our planetary neighbours to us. The most important scientific rationale for studying small solar- system bodies is the key role-play in helping us to understand the formation of the solar system. Comets and asteroids have a close genetic relationship with the planetesimals, which formed from the solar nebula 4.57 billion years ago. Most of our present understanding of these processes has been obtained by studying meteorites, which constitute a biased sample of asteroidal material, and micrometeoroids, which may represent cometary grains processed by solar radiation and atmospheric entry. There is therefore a strong scientific case of studying cometary material in situ, as it is surely more primitive than extraterrestrial samples. A third scientific aspect is the study of the physio-chemical processes, which are specific to comets and asteroids. In this respect, asteroids can provide information on impact phenomena, particularly on very large scale. However, the increase in cometary activity as these bodies approach the Sun undoubtedly represents one of the most complex and fascinating processes to be observed in the solar system. Science Objectives --------------------- The prime scientific objectives as defined in the Announcement of Opportunity RO-EST-AO-0001 by the Rosetta Science Team can be summarized as: - Global characterisation of the nucleus, determination of dynamic properties, surface morphology and composition - Chemical, mineralogical and isotropic compositions of volatiles and refractories in a cometary nucleus - Physical properties and interrelation of volatiles and refractories in a cometary nucleus - Study of the development of cometary activity and the processes in the surface layer of the nucleus and in the inner coma (dust-gas interaction) - Origin of comets, relationship between cometary and interstellar material. - Implications for the origin of the solar system - Global characterisation of the asteroid, determination of dynamic properties, surface morphology and composition. Mission Profile ===================================================================== The ROSETTA mission profile results from the orbit of the target comet 67P/Churyumov-Gerasimenko, which has a perihelion close to 1.2 AU and an aphelion of about 5.7 AU, resulting in a period of about 6.5 years. A detailed description of the Mission Profile can be found in the Rosetta Mission Calendar RO-ESC-PL-5026 and in the RSOC Design Specification RO-EST-PL-2010. The injection of the spacecraft by a single Ariane 5 Launch with the so-called delayed ignition of the upper stage, was not directly into the trajectory to the comet, because of the high spacecraft wet mass. Therefore the spacecraft had to be accelerated by a sequence of gravity assist manoeuvres at Mars and the Earth, in order to catch up with the comets velocity at perihelion. The initially large distance to the comet at the perihelion of its trajectory has been slowly decreasing after the third Earth swing-by. At the intersection of both orbits, the difference in orbit inclination and the residual relative velocity were diminished by the comet orbit matching manoeuvre at around 4.0 AU Sun distance. The range of the spacecraft-to-Sun distance was between 0.88 and 5.33 AU, defined by the minimum Sun distance during the first five years of the mission with the swing-bys at Earth, and the maximum Sun distance close to the aphelion of the comets orbit. The evolution of the spacecraft distance to Earth over the mission time followed the profile of the Sun distance superimposed by an oscillation with an amplitude of 2 AU (+1,-1) and a period of about one year due to the Earths motion around the Sun. This resulted in a range from 0 AU (Earth Departure and Swing-by) to 6.3 AU during the superior solar conjunction close to the spacecrafts aphelion (see Solar Conjunctions section below). After the second and third Earth swing-by ROSETTA crossed the asteroid main belt, which gave the opportunity of two asteroid flybys. The asteroids 2867 Steins and 21 Lutetia, were encountered on 5 September 2008 and 10 July 2010 respectively. These two asteroids had been selected at the Science Working Team meeting on 11th March 2004 among all the available candidate asteroids, depending on the scientific interests and the propellant required for the correction manoeuvre. Between the major mission events, up to the comet rendezvous manoeuvre, the spacecraft performed long interplanetary cruise phases (up to 2.5 years) with several solar conjunctions (see Solar Conjunctions section below) and the power critical aphelion passage (last cruise phase). In order to reduce the ground segment costs and the wear and tear of spacecraft equipment during these phases, the spacecraft was put in Hibernation Mode. Two types of hibernation modes were planned to be used: * Deep Space Hibernation Mode above 4.5 AU: Inertial spin mode with a spin rate of 4 deg/sec. The spacecraft was almost entirely passive, except of receivers/ decoders, power supply, heaters and two Processor Modules with one RTU. * Near Sun Hibernation Mode below 4.5 AU: 3-axes stabilised mode with the solar arrays Sun-pointing and the +X-axis Earth-pointing. Attitude control was performed with thrusters and star trackers, based on ephemerides; occasional solar array adjustments and ground contacts via the medium gain antenna (MGA). The final approach to the comet into its sphere of influence was prepared by the rendezvous manoeuvre (RVM-2), that matched the spacecraft orbit with the comet orbit. A subsequent sequence of approach manoeuvres, supported by optical navigation, took the spacecraft closer and closer to the comet. After determination of the physical model of the comet by Doppler and optical measurements, the spacecraft was inserted into a global mapping orbit around the comet. The Duck-shape of the comet was a surprised and a challenge for the Flight Dynamics team. Three activity cases had been planned to orbit the comet, respectively at 30, 20 or 10km. Finally, it has been chosen to go to 10km. Meanwhile, a board was selecting 5 and then 2 landing sites. The chosen landing site were located on the head of the Duck Shape comet. The delivery of the Lander or Surface Science Package (SSP) was achieved from an eccentric orbit, which took the spacecraft to a low altitude above the selected landing site. The Lander release was fully automatic according to a predefined schedule, and led to a first touch down with minimum vertical and horizontal velocities relative to the local rotating surface. The first touch down reached the foreseen landing site within 50m accuracy. However, the Lander did not succeed in harpooning and bounced twice. It was stopped by cliff walls, which unluckily hid the Lander from the Sun. The Lander, Philae, had the time to operate all instruments on board, during a phase named the FSS, First Science Sequence, before going to sleep on November, 15th at 00:36 UTC. Upon the landing of the Lander, the spacecraft provided uplink and downlink data relay between the Lander and the Earth. After the Lander delivery the ROSETTA spacecraft escorted the comet until the perihelion passage (13th August 2015) and outwards again, until a Sun distance of 2 AU was reached at end of the year 2015. The main scientific objective during this phase was the monitoring of the features of the active comet. The mission was extended from 1st January 2016 to 30th September 2016. Rosetta ended its journey on September 30th by a controlled impact onto the comet from a altitude of about 19km. Mission Phases Overview ====================================================================== This section gives an overview of the major mission phases and main events in scheduled tables. A description of the individual phases is given in the following section. More detailed information can be found in the Rosetta Mission Calendar RO-ESC-PL-5026 and the RSOC Design Specification RO-EST-PL-2010 Mission Phase Schedule ----------------------- The following table shows a schedule of the mission phases, with start-end times (dd/mm/yyyy), duration (days) and distance to the sun (Astronomical Units). Some of the most important events within the mission phases are marked with an arrow (->). Further description of each mission phase is given below. .==================================================================== | Phase |Start Date|Main Event| End Date |Dur |SunDist(AU)| |=================|==========|==========|==========|====|===========| |LEOP |02/03/2004| |04/03/2004| 3 | | |-----------------|----------|----------|----------|----|-----------| |Commissioning1 |05/03/2004| |06/06/2004| 94 | 0.89-0.99 | | ->DSM1 | |11/05/2004| | | | | ->DSM1 Touch-up| |16/05/2004| | | | |-----------------|----------|----------|----------|----|-----------| |Cruise 1 |07/06/2004| |05/09/2004| 91 | 0.89-1.04 | |-----------------|----------|----------|----------|----|-----------| |Commissioning2 |06/09/2004| |16/10/2004| 41 | 1.04-1.09 | |-----------------|----------|----------|----------|----|-----------| |Earth Swing-by1 |17/10/2004| |04/04/2005| 170| 0.99-1.11 | | ->Earth | |04/03/2005| | | | |-----------------|----------|----------|----------|----|-----------| |Cruise 2 |05/04/2005| |28/07/2006| 480| 1.04-1.76 | | ->Deep Impact | |04/07/2005| | | | |-----------------|----------|----------|----------|----|-----------| |Mars Swing-by |29/07/2006| |28/05/2007| 304| 0.99-1.59 | | ->DSM2 | |29/09/2006| | | | | ->Mars | |25/02/2007| | | | | ->DSM3 | |29/04/2007| | | | |-----------------|----------|----------|----------|----|-----------| |Cruise 3 |29/05/2007| |12/09/2007| 107| 1.32-1.58 | |-----------------|----------|----------|----------|----|-----------| |Earth Swing-by2 |13/09/2007| |27/01/2008| 137| 0.91-1.32 | | ->Earth | |13/11/2007| | | | |-----------------|----------|----------|----------|----|-----------| |Cruise 4-1 |28/01/2008| |03/08/2008| 189| 1.02-2.03 | |-----------------|----------|----------|----------|----|-----------| |Steins Flyby |04/08/2008| |05/10/2008| 63 | 2.03-2.19 | | ->Steins | |05/09/2008| | | | |-----------------|----------|----------|----------|----|-----------| |Cruise 4-2 |06/10/2008| |13/09/2009| 343| 1.35-2.26 | | ->DSM4 | |19/03/2009| | | | |-----------------|----------|----------|----------|----|-----------| |Earth Swing-by3 |14/09/2009| |13/12/2009| 92 | 0.98-1.35 | | ->Earth | |13/11/2009| | | | |-----------------|----------|----------|----------|----|-----------| |Cruise 5 |14/12/2009| |16/05/2010| 154| 1.03-2.45 | |-----------------|----------|----------|----------|----|-----------| |Lutetia Flyby |17/05/2010| |03/09/2010| 111| 2.45-3.14 | | ->Lutetia | |10/07/2010| | | | |-----------------|----------|----------|----------|----|-----------| |Rendez-vousMan1 |04/09/2010| |13/07/2011| 313| 3.15-4.58 | | ->RVM1 | |23/01/2011| | | | |-----------------|----------|----------|----------|----|-----------| |Cruise 6 (DSHM) |14/07/2011| |20/01/2014| 917| 4.46-5.29 | |-----------------|----------|----------|----------|----|-----------| |Rendez-vousMan2 |21/01/2014| |17/08/2014| 206| 3.40-4.49 | | ->RVM2 1st burn | |21/05/2014| | | | |-----------------|----------|----------|----------|----|-----------| |Global Mapping |18/08/2014| |19/10/2014| 63 | 3.15-3.53 | |and Close | | | | | | |Observation | | | | | | |-----------------|----------|----------|----------|----|-----------| |Lander Delivery |20/10/2014| |16/11/2014| 28 | 2.97-3.15 | |->Lander Delivery| |12/11/2014| | | | |-----------------|----------|----------|----------|----|-----------| |Comet Escort |17/11/2014| |31/12/2015| 410| 1.24-2.96 | ------------------------------------------------------------------- | Extension |31/12/2015| |30/09/2016| 274| 2.01-3.83 | ------------------------------------------------------------------- Payload Checkouts ----------------- Payload checkouts were scenarios designed to allow Rosetta payload to make regular health checks, to activate mechanisms and to monitor trends through calibration tests. They were allocated in the mission calendar at regular 6-month periods during the first 10 years of the mission cruise phase. They were split into passive and active payload checkouts. Passive payload checkouts were entirely non-interactive. Conditions for the passive checkout were that it would: a) not require any real time monitoring, b) run entirely off of MTL, c) not require s/c specific pointing other than to maintain listed constraints, d) produce minimal science data. Active payload checkout operations were executed both interactively and non-interactively . Conditions for the active checkout were that it would: a) limit the requirement for real time monitoring, b) run mostly from MTL, c) limit the requirement for s/c specific pointing beyond maintaining listed constraints, d) produce minimal science data. There was more flexibility during active checkouts and in addition payloads used interactive passes to make any necessary memory patches and tests. .-------------------------------------------------------------------. | Name | Type | Begin | End | Mission Phase | |-----------------|--------|----------|-----------|-----------------| | P/L Checkout 0 |Passive |27/03/2005| 31/03/2005| Earth Swing-by 1| | P/L Checkout 1 |Passive |30/09/2005| 05/10/2005| Cruise 2 | | P/L Checkout 2 |Passive |03/03/2006| 08/03/2006| Cruise 2 | | P/L Checkout 3 |Passive |25/08/2006| 30/08/2006| Mars Swing-by | | P/L Checkout 4 | Active |23/11/2006| 22/12/2006| Mars Swing-by | | P/L Checkout 5 |Passive |18/05/2007| 23/05/2007| Mars Swing-by | | P/L Checkout 6 | Active |13/09/2007| 29/09/2007| Earth Swing-by 2| | P/L Checkout 7 |Passive |04/01/2008| 09/01/2008| Earth Swing-by 2| | P/L Checkout 8 | Active |19/07/2008| 24/07/2008| Cruise 4-1 | | P/L Checkout 9 |Passive |28/01/2009| 02/02/2009| Cruise 4-2 | | P/L Checkout 10 | Active |18/09/2009| 08/10/2009| Earth Swing-by 3| | P/L Checkout 12 |Passive |22/04/2010| 15/05/2010| Cruise 5 | | P/L Checkout 13 |Passive |01/12/2010| 15/12/2010| RVM1 | ------------------------------------------------------------------- Solar Conjunctions/Oppositions ------------------------------- Other mission phases, which resulted from the orbit geometry and interfered with the above operational phases, were the solar conjunctions. Two types of conjunctions occurred throughout the mission: * Solar Oppositions: The Earth was between spacecraft and Sun, resulting in a degradation of the command link to the spacecraft. * Superior Solar Conjunctions: Sun was between spacecraft and Earth, resulting in a degradation of the command and telemetry link to/from the spacecraft. Table below shows the solar conjunction phases throughout the mission with type, begin and duration of the conjunction and corresponding mission phase. The phases are defined as the periods, during which the Sun-SpaceCraft-Earth (SSCE) angle is below 5 degrees. .-------------------------------------------------------------------. | Type |Duration| Begin | End | Mission Phase | |---------------|--------|------------|------------|----------------| | Conjunction 1 | 48d | 21/03/2006 | 07/05/2006 | Cruise 2 | | Conjunction 2 | 39d | 08/12/2008 | 15/01/2009 | Cruise 4-2 | | Conjunction 3 | 50d | 22/09/2010 | 10/11/2010 | RV Manoeuver 1 | | Opposition 1 | 37d | 13/04/2011 | 19/05/2011 | RV Manoeuver 1 | | Conjunction 4 | 64d | 15/10/2011 | 17/12/2011 | Cruise 6 | | Opposition 2 | 47d | 30/04/2012 | 15/06/2012 | Cruise 6 | | Conjunction 5 | 67d | 31/10/2012 | 05/01/2013 | Cruise 6 | | Opposition 3 | 46d | 20/05/2013 | 04/07/2013 | Cruise 6 | | Conjunction 6 | 60d | 24/11/2013 | 22/01/2014 | Cruise 6 | | Opposition 4 | 28d | 25/06/2014 | 22/07/2014 | RV Manoeuver 2 | | Conjunction 7 | 41d | 21/01/2015 | 02/03/2015 | Comet Escort | -------------------------------------------------------------------- It can be noted that for archive purpose and because of the non expected landing, which included rebounds, the Lander team provided the data sets from wake up up to the First Science Sequence (FSS) in 5 data sets with sub mission phases that differ from the official ones. The table below lists these sub phases: ---------------------------------------------------------------------- | PHC | Post Hibernation | 2014-04-09T08:15:25 | 2014-04-23T15:45:13| | | Commissioning | | | |------|------------------|---------------------|--------------------| | PDCS | Pre Delivery | 2014-07-13T14:42:56 | 2014-10-17T20:31:20| | | Calib Science | | | |------|------------------|---------------------|--------------------| | SDL | Separation | 2014-11-12T08:35:02 | 2014-11-12T15:34:04| | | Descent Landing | | | |------|------------------|---------------------|--------------------| | RBD | Rebounds | 2014-11-12T15:34:05 | 2014-11-12T17:30:20| |------|------------------|---------------------|--------------------| | FSS | First Science | 2014-11-12T17:30:21 | 2014-11-15T01:00:00| | | Sequence | | | ---------------------------------------------------------------------- The Orbiter instruments use the phase Prelanding (PRL) to deliver the data from wake-up to FSS. Mission Phases Description ===================================================================== Launch and Early Orbit Phase (LEOP) ----------------------------- Rosetta was launched by an Ariane 5/G+ in a dedicated flight (single launch configuration) from Kourou at 07:17:51 UTC 2 March 2004. After burnout of the lower composite, the upper stage together with the spacecraft remained in an eccentric coast arc for nearly 2 hours. Then the upper stage performed delayed ignition and injected the Rosetta spacecraft into the required escape hyperbola. After spacecraft separation from the upper stage, Rosetta acquired its three axes stabilised Sun pointing attitude and deployed the solar arrays autonomously. Ground operations acquired the down-link in S-band using the ESA network and controlled the spacecraft to a fine- pointing attitude with the HGA pointing towards Earth using X-band telemetry. Tracking and orbit determination were performed, the departure trajectory was verified and corrected by the on-board propulsion system of the spacecraft. The launch locks of the Lander Philae were released at the end of the first ground station pass. Philae remained firmly attached to the spacecraft by the cruise latches until its release at the comet. Commissioning phase (1 and 2) ------------------- Commissioning started three days after launch following the first trajectory correction manoeuvre. A Deep Space Manoeuver (DSM1) of 173 m/s was executed at perihelion. All spacecraft functions needed during the cruise to the comet, in particular for hibernation, were checked and the scientific payload was commissioned. Commissioning was done in two parts, as the New Norcia ground station must have been shared with Mars Express and could not be used by Rosetta from June to mid-September 2004. For more information refer to the following reports: RO-EST-RP-3293 Consolidated Rosetta Payload Report of the Mission Commissioning Results Review RO-EST-RP-3307 RSOC_Commissioning_Results_Report_2005Dec19.pdf RO-EST-RP-3343 Interference Scenario Report Cruise phase 1 -------------- Almost all the scientific instruments, except ALICE were switched off while ground contact was practically not available. No payload operations were done during this phase. Earth swing-by 1 ---------------- The actual Earth swing-by took place on 4-Mar-05. The phase ended one month after the swing-by and the spacecraft was prepared for the next cruise phase to Mars. One passive Payload Checkout was scheduled end of March 2005. Immediately after this flyby an Asteroid Flyby Mode Simulation was performed using the Moon as a target. Some limited payload operations were permitted shortly before during and shortly after this Earth Flyby. Rosetta payload teams were given the opportunity to conduct scientific investigation that included close approach of both the Earth and the Moon and the AFM simulation. Any activities that did not require the Earth-Moon system i.e. continued instrument commissioning, were considered for later in the Mission, such as during the next active checkout. The instrument objectives are listed below. ORBITER ALICE - Flat field calibration - Extended object scattered light calibration (Moon as the target) - Absolute solar calibration - Absolute flux and wavelength calibration (wide part of the slit to take in the Moon) - Door performance test due to anomalies raised during commissioning MIRO - Asteroid Flyby Simulation test - H2O lines in Earth (high quality data obtained but analysis not complete) - Radiometric calibration of the Moon RPC - Sensor calibration - Magnetospheric physics - Verification of the science operations modes for the Mars flyby RSI - HGA to Earth around closest approach to Moon OSIRIS - Because of technical issues OSIRIS was not operated during the Earth Swing-By itself. VIRTIS - Co-alignment M/H - Aldebaran target in IR (failed, boresight did not detect the target) - Absolute calibration using the Moon - Full disc Earth imaging including exosphere over one rotation LANDER CIVA - Earth Picture with Camera #2 or 4 ROMAP with RPC MAG - magnetic axes alignment of sensors with Earth magnetic field - Checking of scaled values with known Earth values - Solar wind values comparison with other s/c Problems: RPC - Loss of LAP science data for 41.5 hours (2005-03-01 19:00 -- 2005-04-03 12:30). For more information refer to the following reports: RO-EST-RP-3318 Payload Passive Checkout 0 Report RO-EST-RP-3321 Rosetta Earth-Swingby #1 Payload Operations Report Cruise phase 2 (and Deep Impact) -------------------------------- After leaving the Earth, the spacecraft made one revolution around the Sun, and in the second arc from perihelion to aphelion made a swing-by of Mars. There was a solar conjunction for more than one month in April 2006 (see Solar Conjunctions section above). Two passive check-outs with non-interactive instrument operations for about 5 days were scheduled during the cruise to Mars. PC1 occurred from 5/09/2005 to 5/10/2005. PC2 took place from 3/03/2006 to 8/03/2006. The NASA Deep Impact mission encountered comet 9P/Tempel 1 on 4 July 2005, which fell into the Cruise 2 mission phase. At around 06:00 UTC, the mother probe sent a 362 kg impactor into the nucleus with a relative speed of 10.2 km/s. Rosetta was in a privileged position for its remote sensing instruments to observe the event (80 million km distance, 90 degrees angle respect to the sun). Rosetta monitored Tempel 1 continuously (i.e. 24 hrs per day) over an extended period from 7 days before the deep impact to 11 days afterwards (27Jun-15Jul 2005). The first 2 days ALICE observed the stars for calibration. From the 28th June to the 15th July, OSIRIS, ALICE, and MIRO operated observing comet 9P/Tempel 1 continuously. VIRTIS was on only several hours around the impact. Maintenance activities were carried out for COSIMA, ROSINA, ALICE. During the Deep Impact subphase, the instruments had the following objectives: ORBITER ALICE - Baseline pre-impact spectrum. Comparison with near and long term post impact spectra. The comet was detected in all spectra. - Strong atomic lines of neutral H and O were detected throughout the observation period. - Two weak lines of neutral C detected on some dates. No change detected by ALICE in comets UV spectrum as a result of impact - except for possible enhancement in C emission. - No evidence of Ar, S, N, CO. - Water production rates. Results TBC. - Dark histograms. - Calibration star before the encounter. Spectra of calibration star was used for calibration of the Deep Impact spectra and instrument sensitivity. The data was also used to look for any flux variations due to pointing/jitter (initial results did not show any evidence of significant fluctuations in the stellar count rate). - Memory patch (time synchronisation issue). MIRO - Changes in the coma composition induced by the impact. - Upper limit on the water production rate in the pre-impact phase of the experiment. Water production rate and albeit with low signal-to-noise measured in the post impact phase. The water production rate was less than had been anticipated based on models. - Detection of carbon monoxide: the analysis was not complete but so far no CO was detected. - Estimate of Doppler velocity. OSIRIS - Accurate photometry of the unresolved nucleus (no atmosphere in between) with complete time coverage. The time resolution was better than a minute around the impact and could draw conclusion about the evolution of the impact cloud during the first hour. The long term monitoring allowed determination of the composition and evolution of the impact cloud (water production and dust/ice ratio) - UV coverage that allowed imaging of the OH emission at 308nm (estimate of the water production by the impact) - Imaging of the coma out to at least 150000km from the nucleus. The effect of the impact could be seen in the images for approximately a week (stereo reconstruction of coma, impact cloud). VIRTIS - Coma and ejecta composition and temporal evolution. But the outburst due to the impact was not energetic enough to reach the minimum sensitivity required. Conclusions of the Deep Impact Observations: The science objectives of the Deep Impact Observations scenario were met. The brightness increase of Tempel 1 produced by the impact was lower than we had hoped for, and as a result the comet was too weak to be detected by VIRTIS. For ALICE and MIRO the signal was just above the sensitivity limit, but nevertheless important measurements could be achieved. The results of OSIRIS even exceeded the expectations, and the first scientific publications were widely cited. The data collected by the experiments on board Rosetta are unique because Tempel 1 was monitored continuously over an extended period of time (no day-and-night cycle in contrast to ground-based telescopes) and in the absence of an absorbing atmosphere. The following operations was done during the Passive checkout 1: ORBITER ALICE - Electronic and software - Test pattern and stim test - Memory check - dark exposures There was no instrument anomalies. The door performance test showed nominal behavior. CONSERT - Consert Orbiter verification - Consert Lander verification - Consert Orbiter/Lander time synchronisation COSIMA - Self check - Target manipulator unit maintenance - Ion emitter maintenance GIADA - Run mechanisms - cover operations - Health check (all subsystems, electronics, noise and contamination monitoring, performances estimation) MIDAS - Exercising of all mechanisms (shutter, approach mechanism, linear stage, wheel, scanner) The test was successful and MIDAS is fully operable. MIRO - Regular exercise and health check of all commands in all modes - Regular dump of EEPROM memory to check for radiation damage. All objectives were met. There was no radiation damage of the EEPROM. RPC - MAG: instrument calibration. Undisturbed solar wind was measured to calibrate the offsets of the MAG instrument in quiet conditions (Hedgecock method). - LAP: instrument calibration. - MIP: Instrument checkout - IES: measurement in the undisturbed solar wind for calibration of its sensors and cross calibration with LAP. The PC operations were completed successfully with no change in instrument performance for MAG and IES. RSI Two frequency downlink driven by the USO and a ground station that could receive the X and S band signals. - Investigate the stability of the USO - Verify interaction with the ground Investigations of the USO data from PC#0 revealed that the behaviour of the USO was obviously not as good as it had been during the last USO test in October. OSIRIS - Exercise the instrument mechanisms - Verify the sanity of the CCD - Verify the focus No anomaly occurred. LANDER Test of the Lander Platform overall performance Secondary battery monitoring Lander extended AFT CDMS EEPROM dump functional test for PTOLEMY CONSERT The following operations have been done during the Passive checkout 2: ORBITER ALICE - same health tests as PC1. Tests successful. CONSERT - same as PC1. Tests generally successful (see report) COSIMA - self check of all hardware sub-systems on operational voltage levels - target manipulator unit checkout - maintenance COSISCOPE checkout - emitter maintenance Tests generally successful. GIADA - Same as PC1 plus monitoring of MBS coating evolution. The cover operations went fine. There was no further contamination of the microbalances. GDS is not fully tested for light conditions. IS seems nominal. All HK values were as expected. MIDAS - same as PC1. Tests were successful. MIRO - Same as PC1. Overall success. RPC - Same as PC1. All performances checked were nominal. RSI - Same as PC1. The USO behaved very good, USO drift satisfactory. OSIRIS - Same as PC1. Generally successful. For solar elongation angles < 90 degrees OSIRIS got substantial scattered light through the nominally closed doors. The scattered light observed during PC2 was unfortunately enough that parts of the CCD surface was saturated. This happened in spite of the large exposure time reduction that was made after PC1. VIRTIS - The check done were performed properly. LANDER Same as PC1 plus functional tests for MUPUS CONSERT For more information refer to the following reports: RO-EST-RP-3341 Deep Impact Observations, Payload Operations Report RO-EST-RP-3342 Passive Payload Checkout 1 Report RO-EST-RP-3418 Passive Payload Checkout 2 Report Mars swing-by ------------- The mission phase began two months before DSM2 of 65 m/s, which was performed near perihelion. The actual Mars swing-by took place on 25-Feb-07. The minimum altitude with respect to the Martian surface was 200 km. The relative approach and departure velocity was 8.8 km/s. During the swing-by a communications black-out of approximately 14 min was expected due to occultation of the spacecraft by Mars. Furthermore the spacecraft was expected to be in eclipse for about 24 min. The phase ended one month after DSM3. DSM3 of 129 m/s was scheduled near the aphelion of this arc in order to obtain the proper arrival conditions at the Earth. Two passive payload check-outs of about 5 days and an active longer one of 25 days were scheduled during the phase (PC3, PC4, PC5). PC3 started on 25th August 2006 and ended 30th August 2006. The following operations were planed during PC3. GIADA and ROSINA did not take part in this PC. ORBITER ALICE - Electronics & software verification, test pattern and stim test, Memory Check, Aperture Door, Performance Test. All operations are executed as expected. CONSERT - Consert Orbiter verification, Consert Lander verification, Consert Orbiter/Lander time Synchronisation. COSIMA - self check of all hardware sub-systems on operational voltage levels, target manipulator unit checkout and maintenance emitter maintenance MIDAS - Regular health check and exercising of all mechanisms (shutter, approach mechanism, linear stage, wheel, scanner) MIRO - Regular exercise and health check of all commands in all modes. Regular dump of EEPROM memory to check for radiation damage. All operations are successful. RPC - MAG: Instrument calibration. Undisturbed solar wind measurement. Such data will be used to calibrate the offsets of the MAG instrument in quiet conditions (Hedgecock method). - LAP: Instrument calibration. - MIP: Instrument checkout. - IES: measurements in the undisturbed solar wind for calibration of its sensors and crosscalibration with LAP. RSI - Investigate the stability of the USO and verify interaction with the ground. The PC3 results were very promising and the behavior of the USO is as good as expected. The stability of the USO was still one order of magnitude better than anticipated before launch. OSIRIS - Instrument mechanisms, verify the sanity of the CCD, verify the focus of the instrument. VIRTIS - Both VIRTIS M and H were working as expected. - PC3 was used to verify the upload of a new pixel map for VIRTIS-H to be used during the forthcoming PC4 (pixel map allowed to drastically reduce the data volume). LANDER - Test of the Lander platform to check the overall performance and Secondary Battery Status - Lander Extended AFT with short function - tests of some units and EEPROM - checks for all ComDPU units - Secondary Battery Monitoring - CDMS EEPROM dump - Separate short functional tests for MUPUS and CONSERT PC4 was an active checkout. It started on Nov., 23rd and ended on Dec., 22nd 2006. All Rosetta payload instruments took part in this scenario. ALICE - Passive Check out - Optics Decontamination - HV and detector tests - Calibrations, performance - Stare observations of Saturn and Vega CONSERT - Passive 6 months Status Check NAVCAM - Calibration COSIMA - Maintenance Procedure - Cosiscope operation GIADA - Passive 6 months status check - Settings test LANDER - Lander interactive and non interactive operations MIDAS - Check out and mechanism activation - s/w upload and functional check out - Calibration - High resolution image of a dust collector facet MIRO - Passive Status Check ROSINA - DPU s/w Patch - COPS microtips - DFMS cover and modes - RTOF delta commissioning RPC - Passive Check out and calibrations - IES noisy channels test, upload patches and tables - LDL failure investigation - Upload new LAP macros - MIP new seq test - Mars Swing By rehearsal - ROMAP/RPC co operation - MAG continuous operation - Upload temporary patch for directional resolution improvement RSI - Passive two frequency downlink SREM - Continuous operation OSIRIS - Passive 6 months Check - Bias, darks, charge transfer efficiency with doors closed - Patch s/w - Staring observations - Calibration and Mars Fly By preparation VIRTIS - H and M calibrations Although several open issues were resolved in this checkout, several issues remain open and new anomaly report were generated. 75% of the planned operations were successful. The 25% loss was mainly due to OSIRIS that lost the majority of its operations. PC5 is a Passive Check Out that started on May, 18th and ended on May, 23rd 2007. The instruments that took part in this PC are listed below: ALICE, CONSERT, COSIMA, GIADA, LANDER, MIDAS, MIRO, RPC, RSI, OSIRIS. VIRTIS was NOGO and did not operate. Main objectives of the scenario have been met with no issues. Payload checkout reports: RO-SGS-RP-0001 _Rosetta_Passive_Payload_Checkout_3_Report_2007Jun27.pdf RO-EST-RP-3464 _Rosetta_Report_Active_Payload_Checkout_4_2006Apr13.pdf RO-SGS-RP-0002 _Rosetta_Passive_Payload_Checkout_5_Report_2007June27.pdf Cruise phase 3 -------------- No check-outs were scheduled during the short cruise to Earth. Earth swing-by 2 ---------------- Daily operations started again around two months before Rosetta reached Earth with tracking and navigation manoeuvres. The actual Earth swing-by took place on 13-Nov-07. The perigee altitude was 13890 km. The relative approach and departure velocity was 9.3 km/s. The phase ended one month after the LGA strobing phase. In this phase the spacecraft got very close to the sun (min distance 0.91AU). One 15 day payload checkout and one 5 day payload checkout were also scheduled in this phase (PC6 and PC7). Payload Checkout 6 (PC6) was an active checkout where a target independent opportunity to perform interactive operations and to request spacecraft pointing was given to all Rosetta payload teams. The active payload checkout 6 ran for 15 consecutive days starting on the 13th September 2007 until the 29th September 2006. All Rosetta payload took part in this scenario. Operations ranged from a repeat of established passive checkout operations to extensive software patching and calibration campaigns. Four instruments required active spacecraft pointing during the scenario with nine different targets observed. Pointing types were 7 stares, 2 slew scans, 2 raster scans giving a total of around 176 hours of dedicated spacecraft pointing. These were mostly for calibration purposes. Overall operations went smoothly. Although several open issues were resolved in this checkout several issues remained open and new ones have been generated. Payload Checkout 7 (PC7) was a passive checkout run form 4th January 2008 to 9th January 2008. Main objectives have been met with no issue apart from GD. This issue was due to higher operating temperatures resulting from the short Sun-Spacecraft distance. The Payload checkout reports are: RO-SGS-RP-0004 _Rosetta_Report_Active_Payload_Checkout_6_2007Oct30.doc RO-SGS-RP-0005 _Rosetta_Passive_Payload_Checkout_7_Report_2008Jun24.pdf. Cruise phase 4 (split into 4-1 and 4-2) -------------- In this phase the spacecraft made one revolution around the Sun. A solar conjunction took place in January 2009 (see Solar Conjunctions section above), together with another two conjunctions of the Earth- spacecraft- Sun angle (Sun-Earth conjunction as seen from the spacecraft). In this phase the spacecraft got very close to the sun (min distance 0.91AU). This Cruise phase has been splitted in two parts after the selection of the first Asteroid flyby which fell in the middle of this phase. Cruise 4-1 was before the flyby phase, and 4-2 was right after. Two passive check-outs were scheduled, one during Cruise 4-1 and the second one during Cruise 4-2. During CR4, Passive Checkout 9 and Active Checkout 8 were planned. Payload Checkout 8 (PC8) was an active checkout where a target independent opportunity to perform interactive operations and to request spacecraft pointing was given to all Rosetta payload teams. All Rosetta payload took part in this scenario. The Active Payload Checkout 8 ran for 2 days (05-06 July 2008) plus 26 consecutive days starting on the 9th July 2008 until the 1st August 2008. Three instruments required active spacecraft pointing during the scenario with 9 different targets observed. Pointing types were 14 stares and 3 raster scans. These were mostly for calibration purposes. Payload Checkout 9(PC9) was a passive checkout executed between 28th January and 2nd February 2009. An RSI passive checkout was also completed on 09th February. All but 2 of the Rosetta payload instruments participated in the scenario, the exceptions being Rosina and Virtis. Operations were limited to instrument health checks and passive checkouts, as is the case for nominal Passive Checkout scenarios. All of the operations planned and executed in the PC09 scenario were successful (as detailed in Section 3). Minor issues were observed by 2 instruments (CN and RS) but none of these prevented the successful completion of the corresponding operations. The Payload checkout reports are: RO-SGS-RP-0019 _Rosetta_Report_Active_Payload_Checkout_8_2011Jul25.pdf RO-SGS-RP-0030 _Rosetta_Report_Passive_Payload_Checkout_9_2011Jul20.pdf Steins flyby ------------- Asteroid Steins was the first dedicated scientific target of the Rosetta mission. Closest approach was on 5 September 2008 at 18:38:22 UTC. Rosetta flew at 800 km from asteroid Steins. For the first time a European spacecraft flew next to an asteroid, performed an optical navigation campaign, and autonomously tracked the asteroid by means of its on board camera. The 2867 Steins E-type asteroid had been discovered on 4 November 1969 by N. Chernykh. Its dimensions have been estimated by KELLERETAL2010 to 6.67 x 5.81 x 4.47 km3, corresponding to a spherical equivalent radius of 2.65 km. Its sidereal rotation period has been estimated to 6.04681 +/- 0.00002h, its pole direction in ecliptic coordinates to approximately Lambda = 250 deg and Beta = -89 deg with an error of about 5 degrees LAMYETAL2008. Its albedo has been estimated to 0.3 in the visible and 0.4 in the infrared, both by KELLERETAL2010 and LAMYETAL2008. The two asteroids Rosetta flew by are secondary science targets of the Rosetta mission, with comet 67P/Churyumov-Gerasimenko being the primary science target. Therefore, scientific measurements of Asteroid (2867) Steins had highest priority. Some calibrations were also performed during the flyby phase. The flyby geometry necessitated a flip in the spacecraft attitude before closest approach. As a compromise between the incompatible requirements to minimize the illumination of the -X and +-Y panels of the spacecraft (flip as late as possible) and to minimize the impact on the science observations (flip as early as possible), the spacecraft flip was performed between 40 and 20 minutes before closest approach. Rosettas relative speed with respect to Steins was 8.6km/s. The heliocentric and geocentric distances of Rosetta during the Steins flyby were 2.14 AU and 2.41 AU, respectively. The one way light travel time was 20 minutes. The estimated accuracy of the determination of the position of Steins in the plane perpendicular to the flight direction during the naviga- -tion campaign was +/-2 kms for navigation with OSIRIS and +/-16 kms for navigation with the NAVCAMs (from navigation slot on Sept. 4). For the targeted passage through phase angle 0 at a distance of 1280 kms from Steins, a positional offset of 2 kms would correspond to a minimum phase angle of 0.1 degree. The following table shows an overview of the Steins Flyby scenario: ------------------------------------------------------------------ | Start Date | End Date | Operation | ------------------------------------------------------------------ | 04/08/2008 | 04/09/2008 | Navigation campaign (astrometry) using| | | | NAVCAM and OSIRIS NAC | ------------------------------------------------------------------ | 01/09/2008 | 10/09/2008 | Scientific operations targeting the | | | | asteroid | ------------------------------------------------------------------ | 07/09/2008 | 04/10/2008 | Observation of gravitational | | | | microlensing events in the galactic | | | | bulge by OSIRIS | ------------------------------------------------------------------- The following table shows the observation results per instrument: ---------------------------------------------------------------------- | Instrument| Title |Success| Comments | ---------------------------------------------------------------------- | ALICE 01 | Alice optics | Yes | at the beginning and | | | decontamination | | end of all scenarios | |--------------------------------------------------------------------| | ALICE 02 | Standard stellar flux | Yes | During major | | | calibration using the AL| | scenarios | | | narrow center boresight | | | |--------------------------------------------------------------------| | ALICE 03 | Standard stellar flux | Yes | During major | | | calibration using the AL| | scenarios | | | +X wide bottom boresight| | | |--------------------------------------------------------------------| | ALICE 04 | Dark exposures | Yes | Regular calibration | |--------------------------------------------------------------------| | ALICE 05 | Search for evidence of | Yes | No exosphere or coma | | | exosphere/coma around | | found | | | Steins | | | |--------------------------------------------------------------------| | ALICE 06 | Point at Steins to | Yes | First Spectrum of an | | | obtain an FUV spectrum | | asteroid below 200nm | |--------------------------------------------------------------------| | ALICE 07 | Point to the Steins RA | Yes | | | | and Dec at the mid point| | | | | of AL 06 observation | | | |--------------------------------------------------------------------| | ALICE 08 | Point to the Steins RA | Yes | | | | and Dec at the mid point| | | | | of AL 05 observation | | | |--------------------------------------------------------------------| | ALICE 09 | Standard stellar flux | Yes | During major | | | calibration using the AL| | scenarios | | | -X wide top boresight | | | |--------------------------------------------------------------------| | COSIMA 01 | Image and expose D8 | No | TMU error | | | substrate | | | |--------------------------------------------------------------------| | COSIMA 02 | Image all D8 substrates | No | Cancelled after | | | and store it | | failure of CS 01 | |--------------------------------------------------------------------| | GIADA 01 | non nominal operational | Yes | | | | configuration, i.e. only| | | | | impact sensor on and | | | | | cover closed | | | |--------------------------------------------------------------------| | LANDER 01 | Run MUPUS TEM mode | Yes | | | | during periods with | | | | | pronounced temperature | | | | | changes | | | |--------------------------------------------------------------------| | LANDER 02 | Operate ROMAP in slow | Yes | Interference from | | | mode and fast mode | | MUPUS detected | | | during CA +/-30min | | | |--------------------------------------------------------------------| | LANDER 03 | CASSE measurements | Yes | | | | during WOL with SW FM-2 | | | |--------------------------------------------------------------------| | LANDER 04 | Thermal test of SESAME | Yes | | | | soles | | | |--------------------------------------------------------------------| | LANDER 05 | Operation of CASSE and | Yes | | | | DIM in a dusty environ-| | | | | -ment | | | |--------------------------------------------------------------------| | MIRO 01 | Observation of Steins | Yes | | | | during approach | | | |--------------------------------------------------------------------| | MIRO 02 | Run Asteroid Mode | Yes | Pointing inaccuracy | | | sequence at closest | | during Asteroid Flyby| | | approach to Steins | | mode affects scienti-| | | | | -fic output | |--------------------------------------------------------------------| | MIRO 03 | Observation of Steins | Yes | | | | during Recession | | | |--------------------------------------------------------------------| | ROSINA 01 | Outgassing | Yes | | |--------------------------------------------------------------------| | ROSINA 02 | Single mass measurement | Yes | Contamination issue | | | sequence | | due to s/c flip. | | | | | Sw instability caused| | | | | temporary switch-off | | | | | of detector | |--------------------------------------------------------------------| | ROSINA 03 | Pressure monitoring | Yes | Contamination issue | | | | | due to s/c flip | |--------------------------------------------------------------------| | RPC 01 | Steins Fly by | Mostly| ICA did not produce | | | | | scientifically useful| | | | | data due to a comman-| | | | | -ding error. | | | | | Interference from | | | | | MUPUS detected | |--------------------------------------------------------------------| | RSI 01 | Coherent measurement | TBD | TBD | | | with Xup/Xdown or Xup/ | | | | | Sdown received by a | | | | | groundstation capable of| | | | | receiving X- and S- band| | | | | Doppler and Ranging | | | | | Signals | | | |--------------------------------------------------------------------| | SREM 01 | SREM standard | YES | No Steins specific | | | accumulation | | operations, general | | | | | particle flux | | | | | monitoring | |--------------------------------------------------------------------| | OSIRIS 01 | Vega Stare | Yes | Stellar calibrations | | | | | repeated during major| | | | | scenarios | |--------------------------------------------------------------------| | OSIRIS 02 | 16 Cyg Stare | Yes | Stellar calibrations | | | | | repeated during major| | | | | scenarios | |--------------------------------------------------------------------| | OSIRIS 03 | Steins Lightcurve at | Yes | TBD | | | CA-2 weeks | | | |--------------------------------------------------------------------| | OSIRIS 04 | Steins Lightcurve at | Mostly| WAC data compromised | | | CA-24 hours | | by overexposure | |--------------------------------------------------------------------| | OSIRIS 05 | Steins observation at CA| Mostly| NAC went into Safe | | | | | mode due to shutter | | | | | issues about 10 min | | | | | before CA | |--------------------------------------------------------------------| | OSIRIS 06 | Fast imaging sequence | Yes | observation merged | | | around the time of phase| | with OSIRIS 05 | | | angle 0 | | | |--------------------------------------------------------------------| | OSIRIS 07 | Characterization of | Yes | TBD | | | solar straylight for | | | | | same orientation as the | | | | | one the s/c had when | | | | | the OSIRIS hill sphere | | | | | dust search was | | | | | performed | | | |--------------------------------------------------------------------| | VIRTIS 01 | VIRTIS-M lightcurve of | Yes | TBD | | | Steins | | | |--------------------------------------------------------------------| | VIRTIS 02 | V-M and V-H operating; | Yes | Operations were | | |s/c stare at target Nadir| |affected by inaccuracy| | | looking; continuous | | of s/c pointing | | | acquisition in pushbroom| | | | | mode | | | |--------------------------------------------------------------------| | VIRTIS 03 | V-M and V-H continuous | Yes | TBD | | |observation of Steins for| | | | | 1 hour after VR02; V-M | | | | | in image mode (10 lines | | | | | scan) | | | |--------------------------------------------------------------------| The Rosetta first asteroid flyby was a success. The navigation campaign produced highly accurate predictions of the Steins position, and during the flyby most instruments worked without serious problems. Asteroid flyby mode worked well, although with somewhat lower tracking accuracy than expected. Summary results per instrument during closest approach can be found in the operation report: RO-SGS-RP-0020 Science Operations Report for the Steins FlyBy Earth swing-by 3 ---------------- Operations were essentially the same as for the Earth swing-by 2. The actual Earth swing-by took place in Nov-09. The perigee altitude was 300 km. The relative approach and departure velocity was 9.9 km/s. Phase started 3 months before the swing-by and ends 1 month later. Two short payload checkouts of about 5 days each were scheduled during this phase. The phase contained the Active Payload Checkout 10 (PC10). The section first describes PC 10 and then the Earth Flyby. PC10 ---- The Active PC10 ran for 18 consecutive days from 18th September 2009 to 4th October 2009. It represented a target independent opportunity to perform interactive operations and to request spacecraft pointing. All payloads took part in this scenario, as interactive or non-interactive operations. There were approximately 425 hours of non-interactive and 68 hours of interactive operations. Four instruments required active s/c pointing with 15 targets observed (111 hours of dedicated s/c pointing). These were mostly for calibration purposes. More details on the results can be found in the report: RO-SGS-RP-0022 Payload Report Active PC10 Earth flyby 3 (EAR3) -------------- This was the last of the three gravity assists from the Earth, after which Rosetta increased its orbital energy, enough to allow the scheduled encounter with the asteroid 21-Lutetia and the rendezvous with Churyumov-Gerasimenko. From an operational point of view, the swing-by spacecraft operations were of highest priority, and both science observations and payload operations were only allowed on a non-interference basis with those. Keeping this in mind, Rosetta had the opportunity to perform special scientific observations of the Earth-Moon system, instrument calibrations using Earth and/or Moon and public relations observations. The criticality of the spacecraft operations left payload operations in a second place, provided that Earth is not a scientific target for Rosetta and that potential trajectory correction manoeuvres would force the cancellation of all of them. This is reflected in the fact that only six instruments took part in the operations: ALICE, MIRO, OSIRIS, RPC, VIRTIS and SREM. Operation scheduling was centred on Earth Closest Approach, which took place on 13 Nov. 2009 at 07:45:40 UTC, and overall operations went smoothly, despite some scattered events. According to the available reports, the EAR3 can be considered as fully successful. EAR3 results are described in RO-SGS-RP-0023. Cruise phase 5 -------------- One Active checkout (12) was scheduled during this cruise phase. It can be noted that Passive Checkout 11 were cancelled since there was not enough time to include it between PC10 and PC12. PC 11 was supposed to be passive meaning that it is mainly instrument health check operations. PC 10 and 12 are active and more important to preserve. Payload Checkout 12 (PC12) was an active checkout that ran for 23 consecutive days starting on the 22nd April 2010 until the 14th May 2010. All Rosetta payload took part in this scenario. Operations ranged from a repeat of established passive checkout operations to extensive software patching and calibration campaigns. Overall operations went smoothly. Numerous open issues were resolved in this checkout, whilst several issues remain open and new ones have been generated. There was a particularly noticeable and positive increase in the success rate of payload operations, when compared to previous Scenarios. All results can be read in RO-SGS-RP-0027 report. Lutetia Flyby (17/05/2010 - 03/09/2010) -------------- The second of the flybys took place on 10 July 2010 to the asteroid 21 Lutetia, discovered on 15 November 1852 by H. Goldschmidt. Its classification into a specific asteroid type had turned out to be ambiguous and included the possibilities of a C-type or an M-type asteroid. This contradiction made it an interesting object for close inspection. Closest Approach (CA) occurred at 15:45 UT at a distance of 3168.2km. The relative fly-by velocity was of 15 km/s. The fly-by strategy allowed continuous observations of Lutetia before, during and for 30 minutes after CA. Images obtained by OSIRIS revealed that Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4+/-0.3g/cm3. Its geologically complex surface, ancient surface age and high density suggest that Lutetia is most likely a primordial planetesimal. This is the second of the two asteroids selected at the Science Working Team meeting on 11th March 2004 among all the available candidate asteroids, depending on the scientific interests and the propellant required for the correction manoeuvre. The following operations took place around the Lutetia fly-by: 21 May 2010 - 9 July 2010: Navigation campaign (astrometry) using the OSIRIS NAC and NAVCAM. 5 July 2010- 14 July 2010: scientific operations targeting the asteroid. The Lutetia fly-by was a success. The navigation campaign produced highly accurate predictions of the position of Lutetia and during the fly-by most instruments worked without serious problems (except Rosina, RPC IES and RPC ICA). Asteroid fly-by mode worked excellently. The objectives summarised below have been addressed by the instrument measurements: - Physical and thermal properties, mineralogy and geomorphology of Lutetia from spatially resolved multi-wavelengths remote-sensing observations between the extreme UV and the mm-range. - Determination of the mass of the asteroid from Doppler measurements of the spacecraft trajectory. - Global shape parameters from light curves taken days before CA. - Search for satellite/dust particles. - Search for an asteroid magnetic field. - Particle and field measurements. Results of the Lutetia Fly By can be found in RO-SGS-RP-0028. Rendez-Vous Manoeuver 1 (04/09/2010 - 13/07/2011) ---------------------- The deep space manoeuvre was carried out when the spacecraft reached a distance from the Sun around 4.5 AU on 23-Jan-11. One passive check -out (13) was scheduled during this phase. One solar conjunction of 50 days and one solar opposition of 37 days happened during this phase.(see Solar Conjunctions section above). --PC 13 (1st-9th Dec 2010 + 14th Dec) This was the final Cruise Phase Checkout. A number of additional payload operations were also executed, to close out pending and essential requirements, and/or to configure instruments for the upcoming Deep Space Hibernation Phase. Only OSIRIS did not participate in PC 13. PC13 ran for 9 consecutive days between 1st and 9th December 2010. A RSI passive checkout was also completed on 14th December. All of the operations planned and executed were successful. Minor issues were observed by 4 instruments (Consert, Philae, Rosina, RPC). Alice performed successfully some instrument checkout. Cosima did periodical maintenance and check its status. Giada checked successfully its status. Midas performed a normal passive check-out and an additional modified one for Deep Space Hibernation Preparation. Miro performed a normal and successful passive check-out. Osiris did not participate in the PC13 timeframe. However, on 23-26th March 2011 - post RVM1 - specific OSIRIS operations were performed in order to prepare and configure the instrument for the Rosetta Deep Space Hibernation. The Lander performed some operations and Consert performed an unit functional test; both were partially successful. Rosina did not participate in the nominal PC13 scenario, but conducted several specific operations immediately following completion of the nominal PC13 timeline. A spacecraft slew was executed with RTOF monitoring, to further investigate data observed during Lutetia fly-by. RPC PIU, IES, LAP, ICA performed checkout with some errors/anomalies reported, which were considered as no problem for the instrument. Virtis performed the checkout successfully. RSI measurements during PC13 showed some disturbances. The cause is unknown at the time being. SREM performed a successful checkout. More detailed results can be found in RO-SGS-RP-0029. Cruise phase 6 (8 Jun 2011 - 20 Jan 2014) -------------- The whole period was spent in Deep-Space Hibernation Mode (DSHM). Maximum distances to Sun and Earth are encountered during this period, i.e. 5.3 AU (aphelion) and 6.3 AU, respectively. During this phase, 3 superior solar conjunctions and 2 solar oppositions occurred (see table above). This phase ended with the Spacecraft wake-up on the 20th of January 2014. Rendez-Vous Manoeuver 2 (21 Jan 2014 - 9 Sep 2014) ---------------------- The RVM2 started after Spacecraft wake-up and until September 2014, when the Global Mapping phase started. It contained the Near Comet Drift (NCD), the Far Approach Trajectory (FAT) and the Close Approach Trajectory (CAT). It ended with the transition to Global Mapping. During this phase, Rosetta did a series of ten OCMs, starting on the 7 May to reduce its speed with respect to comet 67P/C-G by about 775 m/s. The first, producing just 20 m/s delta-v ( change in velocity ), was done as a small test burn, as it was the first use of the spacecraft s propulsion system after wake-up. --Near comet drift (NCD) phase (21 May 2014 - 2 July 2014) The following three OCMs form the Near Comet Drift (NCD) phase. They took place every two weeks starting 21 May. They delivered 289.6, 269.5 and 88.7 m/s in delta-v, respectively. -- Far Approach Trajectory (FAT) (2 July - 3 August 2014) The FAT contained the next four burns. The four FAT burns was carried out weekly during July, and all proceeded nominally. The approach manoeuvre sequence reduced the relative velocity in stages down to 3 m/s. During this phase, the first images of the comet were obtained with the optical measurement system (NAVCAM, OSIRIS). After detection, knowledge of the comet ephemeris was drastically improved by processing the on-board observations. Image processing on the ground derived a coarse estimation of comet size, shape and rotation. The first landmarks were identified. The FAT ends at the Approach Transition Point (ATP), which is located in the Sun direction at about 1000 comet nucleus radii from the nucleus. Find below a list of burns with delta-v reduction and duration Date Delta-V m/s Dur.(mins) 7 May 20 41 21 May 290 441 4 Jun 270 406 18 Jun 91 140 2 Jul 59 94 9 Jul 26 46 16 Jul 11 26 23 Jul 5 17 3 Aug 3 13 6 Aug 1 7 -- Close Approach Trajectory (CAT) Close approach trajectory operations started at ATP. The spacecraft distance to the comet was decreased to 20 nucleus radii and the relative velocity fell below 1 m/s. The final point of this phase was the Orbit Insertion Point (OIP), the point where the spacecraft started orbiting the comet. During the CAT, 5 landing sites were selected by the Landing team. Details of the final manoeuvres to prepare insertion: 6 August: Rosetta was commanded to conduct a 1-m/s thruster burn (which ran 7 min) to change its direction and enter onto the first arc (of three arcs) of two triangular (really, tetrahedral) orbits about the comet. It is important to note Rosetta has not been captured by 67P/C-G gravity, and the continuing series of thruster burns were necessary to keep the spacecraft at the comet. Rosetta executed two of these triangular orbits, one large, at about 100km closest pass-by distance (Big CAT) and the second at about 50km ( Little CAT ). 10 August: CAT Change 1 burn - a 6min:25sec, 0.88-m/s burn that pushed Rosetta onto the next arc (100km pass-by height). 13 August: CAT Change 2 burn - a 6min:22sec, 0.87-m/s burn that pushed Rosetta onto the next arc (100km pass-by height). 17 August: CAT Change 3 burn - a 6min:19sec, 0.85-m/s burn that pushed Rosetta onto a transfer arc, down to about 80 km height achieved on 20 Aug (CAT 4). Finally, with the next two burns on 24 and 27 August, the distance was lowered to 50km. - Transition to Global Mapping (TGM) On 31 August, Rosetta began the third and last arc of Little CAT and Rosetta entered the TGM, a set of two manoeuvres. The phase ended at 10 nucleus radii with ta relative velocity of 0.3 m/s. Global Mapping and Close Observations (10 sep 2014 - 28 Oct 2014) The Global Mapping phase ran 10 September to 15 October. During this phase, Rosetta went down to 29 km distance, a point when the spacecraft became actively captured by the comet gravity, and its orbit became circular. At the beginning of this phase, the Lander team down selected 2 landing sites: the nominal and the back up. A series of manoeuvres reduced Rosetta distance from 18.6 km orbit (taking 7 days) to an intermediate orbit approximately 18.6 x 9.8 km (with a period of 5 days). From there the orbit was circularised at about 9.8 km radius, with a period of approximately 66 hours on 15 October, and the mission entered the Close Observation Phase (COP). This phase provided even higher resolution images of the landing site in order to best prepare for Philaes challenging touch-down. The new orbit also allowed a number of Rosettas science instruments to collect dust and measure the composition of gases closer to the nucleus. On the 28 October, Rosetta conducted a thruster burn (82 sec from 12:59 UTC) that delivered a delta-v of 0.081 meters/sec. This pushed the spacecraft to leave the 10-km-altitude circular orbit (following the terminator line) and the COP. Rosetta started its transition to the pre-lander-delivery orbit. On 31 October, the mission control team performed another manoeuvre to enter onto the pre-delivery orbit proper. Lander delivery --------------- On 31 October, Rosetta entered a pre-delivery elliptical orbit at approximately 30 km distance from the comet centre. This orbit was maintained until delivery on 12 November. The orbiter performed its pre-separation manoeuvre at 6:04 on 12 November, which placed it on the trajectory required for separation. The separation occurred at 08:35 UTC (the confirmation signal arrived on Earth at 09:03 UTC). At 10:34 UTC the Lander activated its transmitters and started forwarding its telemetry to the orbiter. At 11:08 UTC, this telemetry was received on ground. Touchdown was confirmed for Philae at 16:03 UTC. While Lander telemetry kept flowing towards the Orbiter, the RF link between the two crafts was regularly interrupted, which was not consistent with a stable landing. Other Lander telemetry gave indication that the Lander had bounced after initial touch-down. The link between Orbiter and Lander was broken at 17:59 UTC one hour earlier than expected for the targeted landing site. On 13 November Lander telemetry was received on ground at 6:01 UTC, very close to the expected time. During the descent, ROLIS acquired an image at 14:38:41 UT, from a distance of approximately 3 km from the surface. The landing site was imaged with a resolution of about 3m per pixel. After separation, Orbiter operations focus on maximising visibility with the Lander and acquiring data to reconstruct the Lander descent trajectory and support Orbiter Navigation. NAVCAM and OSIRIS, once in Lander pointing, acquired every hour until touch-down + 2 hours. After that, NAVCAM observed every 2 hours for navigation. The following Orbiter instruments have been operated: ALICE, CONSERT, MIRO, OSIRIS, ROSINA, RPC. The post-delivery manoeuvre that has been executed on 12 November 2014 started at 09:14:58.1 UTC and a nominal end time at 09:19:53.7 UTC. Rosetta was then on a 50 km orbit. On 13 November at 19:23 UTC Philae started transferring data to Rosetta. Link was lost at 23:08 UTC on 13 November, 40 minutes before predicted time. During this slot was commanded: - ranging measurements by CONSERT (Lander Search) - CIVA images - MUPUS boom deployment and hammering - APXS deployment and measurement On 14 November at 9:01, Philae data were received on-board Rosetta and immediately transmitted to ground, 48 minutes after expected time. The visibility period finished at 11:47 UTC on 14 November, 50 minutes earlier than predicted. During this period was commanded: - APXS released but measured copper thus revealing that the door had not opened. - MUPUS deployment was successful, hammering took place, SESAME detected it - Drill activation for sample return to COSAC - PTOLEMY/COSAC spectra acquisitions - CIVA image but dark................................................. - Consert ranging The fourth and last Philae visibility period started on 14 November at 22:15 UTC ground time. The LAnder bus voltage appeared to decrease rapidly. On November 15 at 00:07, the link between Orbiter and Lander broke. Among the Lander operations carried out during the fourth visibility period was a rotation of the Lander to increase the illumination of its solar arrays. After the planned Touch Down, the Lander did not anchor and bounced. We estimated that the first TD was: Time UTC: 15:34:06 Comet-fixed coordinates: 2.129171, -0.961358, 0.498268 km The NAVCAM image, the NAC image and the first TD as the starting point gave the following impact point at: Time UTC: 16:26:23 Comet-fixed coordinates: 2.450, -0.511, -0.242 km This point has an uncertainty of 7 minutes. The position is also uncertain. By using three WAC images, the second TD can be deduced: Time UTC: 17:31:10 Comet-fixed coordinates: 2.275, 0.249, -0.444 km Consert Ranging estimated a final landing site at Comet-fixed coordinates: 2.446, -0.055, -0.360 km After Touch Down, began the First Science Sequence (FSS) where all Lander instruments operated on the primary battery. The operations did not go as planned due to the several TDs but occurred as listed above. The Long Term Science Phase should have started after the primary battery died, but the final TD let the Lander in a location where the illumination condition could not allow battery charging. Contact was lost on 15 November 2014 at 00:07, ending the FSS, and the Lander went asleep. Escort phase ------------ Planning period during the comet phase were approximately monthly and allowed changes in trajectory types every two weeks. The table below summarises the trajectory followed by Rosetta after the Landing: 21 Nov - 3 Dec 2014 | Bound Orbits at 30 km 3 Dec - 6 Dec 2014 | Transition 6 Dec - 19 Dec 2014 | Bound Orbit at 20 km 19 Dec - 24 Dec 2014 | Transition 24 Dec - 4 Feb 2015 | Bound Orbit at 28 km 4 Feb - 21 Feb 2015 | Close FlyBy CA on 14 Feb at 8km | Leg up to 143km 21 Feb - 10 Mar 2015 | Arcs around 80 km Apr 2015 | Fly bys: CA of 90 km and maximum distance | of 180km May 2015 | Fly bys: first from 125km to 180 km then from | 200km to 325km June 2015 | Fly bys: from 200 to 240km then CA to 160km | Sub s/c point located North for Lander com. July 2015 | Fly bys: CA at 150 km Aug 2015 | Fly bys: CA increased to 180 km (star tracker | issues. Sept 2015 | Fly bys: between 400 and 460km first then | reduced to 300-330 km Oct 2015 | Far excursion at 1500 km Nov 2015 | Fly bys from 420 to 140km Dec 2015 | Fly bys (75-150km) Jan 2016 | Fly bys (45-95km) Feb 2016 | Fly bys (32-52km) Mar 2016 | Terminator orbit (17 to 12km) - night side | excursion - far excursion at 1000km - | hyperbolic arcs at 200km Apr 2016 | Far Flyby arcs at 200km in terminator - Flyby | arcs at 80 km at 80 deg - Close Flyby at 30km | Outbound arc (140 to 70km) at terminator - | insertion into bound orbits at 19km dist. May 2016 | Bound orbits in terminator plane: first | elliptical 19kmx10km - circular 10km - | circular 7km - mapping orbit at 17km. Jun 2016 | Mapping orbit at 17km - at 30 km - 2 day-side | half orbit at 45 deg phase angle - elliptical | 28x14km at terminator Jul 2016 | 2.5 elliptical orbit 26x9km at terminator - | circular orbit at 10 km at terminator 26 Jul - 9 Aug 2016 | 4 elliptical orbits 14x8km with 70-110 deg | phase angles 9 Aug - 2 Sep 2016 | elliptical orbits (70-110 deg phase angles). | Pericentre gradually reduced and apocentre | increased while constant orbital period of 3 | days 13.7km, 7.5km, 13.7km, 6.7km, 14.4km, | 6.0km, 15.1km, 5.5km, 15.5km, 5.0km, 15.9km, | 4.6km, 16.2km, 4.4km, 16.4km 2 Sep - 26 Sep 2016 | elliptical orbits (70-110 deg phase angles). | Pericentre gradually reduced and apocentre | increased while constant orbital period of 3 | days 4.0km, 17.1km, 3.9km, 17.1km, 4.1km, | 16.1km, 4.1km, 16.8km, 4.1km, 16.0km, 4.1km, | 17.0km, 4.1km, 16.7km, 4.1km, 17.2km 26 Sep - 30 Sep 2016 | exit from elliptical orbits - hyperbolic arcs | with dist from 17 to 23km - final descent to | the comet nucleus. Orbiter Experiments ===================================================================== ALICE ----- ALICE, an Ultraviolet Imaging Spectrometer, characterise the composition of the nucleus and coma, and the nucleus/coma coupling of comet 67 P/Churyumov-Gerasimenko. This is accomplished through the observation of spectral features in the extreme and far ultraviolet (EUV/FUV) spectral regions from 70 to 205 nm. ALICE make measurements of noble gas abundances in the coma, the atomic budget in the coma, and major ion abundances in the tail and in the region where solar wind particles interact with the ionosphere of the comet. ALICE determine the production rates, variability, and structure of H2O and CO, and CO2 gas surrounding the nucleus and the far-UV properties of solid grains in the coma. ALICE studied Mars and the Rosetta asteroid flyby targets while en route to Churyumov- Gerasimenko. ALICE also map the cometary nucleus in the FUV Instrument References: STERNETAL2007 CONSERT ------- CONSERT (Comet Nucleus Sounding Experiment by Radio wave Transmission) is an experiment that perform tomography of the comet nucleus revealing its internal structure. CONSERT operates as a time domain transponder between the Lander on the comet surface and the Orbiter. A radio signal passes from the orbiting component of the instrument to the component on the comet surface and is then immediately transmitted back to its source, the idea being to establish a radio link that passes through the comet nucleus. The varying propagation delay as the radio waves pass through different parts of the cometary nucleus is used to determine the dielectric properties of the nuclear material. Many properties of the comet nucleus is examined as its overall structural homogeneity, the average size of the sub-structures (Cometesimals) and the number and thickness of the various layers beneath the surface. Instrument References: KOFMANETAL2007 COSIMA ------ The Cometary Secondary Ion Mass Analyser is a secondary ion mass spectrometer equipped with a dust collector, a primary ion gun, and an optical microscope for target characterization. Dust from the near comet environment is collected on a target. The target is then moved under a microscope where the positions of any dust particles are determined. The cometary dust particles are then bombarded with pulses of indium ions from the primary ion gun. The resulting secondary ions are extracted into the time-of-flight mass spectrometer. Instrument References: KISSELETAL2007 GIADA ----- The Grain Impact Analyser and Dust Accumulator measures the scalar velocity, size and momentum of dust particles in the coma of the comet using an optical grain detection system and a mechanical grain impact sensor. Five microbalances measure the amount of dust collected as the spacecraft orbits the comet. Instrument References: COLANGELIETAL2007 MIDAS ----- The Micro-Imaging Dust Analysis System is intended for the microtextural and statistical analysis of cometary dust particles. The instrument is based on the technique of atomic force microscopy. This technique, under the conditions prevailing at the Rosetta Orbiter permits textural and other analysis of dust particles to be performed down to a spatial resolution of 4nm. Instrument References: RIEDLERETAL2007 MIRO ---- MIRO (Microwave Instrument for the Rosetta Orbiter) is composed of a millimetre wave mixer receiver and a submillimetre heterodyne receiver. The submillimetre wave receiver provides both broad band continuum and high resolution spectroscopic data, whereas the millimetre wave receiver provides continuum data only. MIRO measures the near surface temperature of the comet, allowing estimation of the thermal and electrical properties of the surface. In addition, the spectrometer portion of MIRO allows measurements of water, carbon monoxide, ammonia, and methanol in the comet coma. Instrument References: GULKISETAL2007 OSIRIS ------ OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is a dual camera imaging system operating in the visible, near infrared and near ultraviolet wavelength ranges. OSIRIS consists of two independent camera systems sharing common electronics. The narrow angle camera is designed to produce high spatial resolution images of the nucleus of the target comet. The wide angle camera has a wide field of view and high straylight rejection to image the dust and gas directly above the surface of the nucleus of the target comet. Each camera is equipped with filter wheels to allow selection of imaging wavelengths for various purposes. The spectroscopic and wider band infrared imaging capabilities originally proposed and incorporated in the instrument name were descoped during development. Instrument References: KELLERETAL2006 ROSINA ------ ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) consists of two mass spectrometers, since no one technique is able to achieve the resolution and accuracy required to fulfil the ROSETTA mission goals over the range of molecular masses under analysis. In addition, two pressure gauges provide density and velocity data for the cometary gas. The two mass analysers are: * A double focusing magnetic mass spectrometer with a mass range of 1 - 100 amu and a mass resolution of 3000 at 1 % peak height, optimised for very high mass resolution and large dynamic range * A reflectron type time-of-flight mass spectrometer with a mass range of 1 -300 amu and a mass resolution better than 500 at 1 % peak height, optimised for high sensitivity over a very broad mass range Instrument References: BALSIGERETAL2007 RPC --- RPC (Rosetta Plasma Consortium) is a set of five sensors sharing a common electrical and data interface with the Rosetta orbiter. The RPC sensors are designed to make complementary measurements of the plasma environment around the comet 67P/Churyumov-Gerasimenko. The RPC sensors are: * ICA: an Ion Composition Analyser, which measures the three- dimensional velocity distribution and mass distribution of positive ions; * IES: an Ion and Electron Sensor, which simultaneously measures the flux of electrons and ions in the plasma surrounding the comet; * LAP: a Langmuir Probe, which measures the density, temperature and flow velocity of the cometary plasma; * MAG: a Fluxgate Magnetometer, which measures the magnetic field in the region where the solar wind plasma interacts with the comet; Instrument References: GLASSMEIERETAL2007B * MIP: a Mutual Impedance Probe, which derives the electron plasma density, and can sometimes constrain other plasma parameters of the inner coma of the comet. Instrument References: CARRETAL2007 RSI --- RSI (Radio Science Investigation) makes use of the communication system that the Rosetta spacecraft uses to communicate with the ground stations on Earth. Either one-way or two-way radio links can be used for the investigations. In the one-way case, a signal generated by an ultra-stable oscillator on the spacecraft is received on earth for analysis. In the two way case, a signal transmitted from the ground station is transmitted back to Earth by the spacecraft. In either case, the downlink may be performed in either X-band or both X -band and S-band. RSI investigates the nondispersive frequency shifts (classical Doppler) and dispersive frequency shifts (due to the ionised propagation medium), the signal power and the polarization of the radio carrier waves. Variations in these parameters yields information on the motion of the spacecraft, the perturbing forces acting on the spacecraft and the propagation medium. Instrument References: PAETZOLDETAL2007 VIRTIS ------ VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) is an imaging spectrometer that combines three data channels in one instrument. Two of the data channels are committed to spectral mapping and are housed in the Mapper optical subsystem. The third channel is devoted solely to spectroscopy and is housed in the High resolution optical subsystem. The mapping channel optical system is a Shafer telescope consisting of five aluminium mirrors mounted on an aluminium optical bench. The mapping channel uses a silicon charge coupled device (CCD) to detect wavelengths from 0.25 micron to 1 micron and a mercury cadmium telluride (HgCdTe) infrared focal plane array (IRFPA) to detect from 0.95 micron to 5 microns. The high resolution channel is an echelle spectrometer. The incident light is collected by an off-axis parabolic mirror and then collimated by another off-axis parabola before entering a cross- dispersion prism. After exiting the prism, the light is diffracted by a flat reflection grating, which disperses the light in a direction perpendicular to the prism dispersion. The high-resolution channel employs a HgCdTe IRFPA to perform detection from 2 to 5 microns. Instrument References: CORADINIETAL2007 SREM ---- The Standard Radiation Environment Monitor (SREM) is a monitor-class instrument intended for space radiation environment characterisation and radiation housekeeping purposes. SREM provides continuous directional, temporal, and spectral data of high-energy electron, proton, and cosmic ray fluxes encountered along the orbit of the spacecraft, as well as measurements of the total accumulated radiation dose absorbed by SREM itself. This instrument is a facility monitor flown on several ESA spacecrafts. It is not considered as a PI (Principal Investigator) instrument. Instrument References: MOHAMMADZADEETAL2003 LANDER (PHILAE) ===================================================================== The 100 kg Rosetta Lander, named Philae, is the first spacecraft ever to make a soft landing on the surface of a comet nucleus. The Lander is provided by a European consortium under the leadership of the German Aerospace Research Institute (DLR) and the French Space Research Center (CNES). Other members of the consortium are ESA and institutes from Austria, Finland, France, Hungary, Ireland, Italy and the UK. A description of the Lander can be found in RO-EST-RS-3020. The box-shaped Lander was carried in piggyback fashion on the side of the Orbiter until it arrived at Comet 67P/Churyumov-Gerasimenko. Once the Orbiter was aligned correctly, the ground station commanded the Lander to self-eject from the main spacecraft and unfold its three legs, ready for a gentle touch down at the end of the ballistic descent. The Landing is described above. Immediately after touchdown, a harpoon was supposed to fire to anchor the Lander to the ground and prevent it escaping from the comets extremely weak gravity. The system did not work and the Lander bounced several times. Science Objectives ------------------ It is the general aim of the scientific experiments carried and operated by the Rosetta Lander to obtain a first in situ composition analysis of primitive material from the early solar system, to study the composition and structure of a cometary nucleus, reflecting growth processes in the early solar system, to provide ground truth data for the Rosetta Orbiter experiments and to investigate dynamic processes leading to changes in cometary activity. The primary objective of the Rosetta Lander mission is the in situ investigation of the elemental, isotopic, molecular and mineralogic composition and the morphology of early solar system material as it is preserved in the cometary nucleus. Measurement of the absorption and phase shift of electromagnetic waves penetrating the comet nucleus will help to determine its internal structure. Seismometry and magnetometry will also be used to investigate the interior of the comet. The scientific objectives of the Rosetta Lander can be listed according to their priority as follows: 1. Determination of the composition of cometary surface and subsurface matter: bulk elemental abundances, isotopic ratios, minerals, ices, carbonaceous compounds, organics, volatiles - also in dependence on time and insolation. 2. Investigation of the structure and physical properties of the cometary surface: topography, texture, roughness, regolith scales, mechanical, electrical, optical, and thermal properties, temperatures. Characterization of the near surface plasma environment. 3. Investigation of the global internal structure. 4. Investigation of the comet/plasma interaction. The in situ measurements performed by the Rosetta Lander instruments will also provide local ground truth to calibrate Orbiter instruments. Lander Experiments ------------------ Here a description of all the instruments of the Lander: APXS: Alpha-p-X-ray spectrometer - - - - - - - - - - - - - - - - The goal of the Rosetta APXS experiment is the determination of the chemical composition of the landing site and its potential alteration during the comets approach to the Sun. The data obtained is used to characterize the surface of the comet, to determine the chemical composition of the dust component, and to compare the dust with known meteorite types. Instrument References: KLINGELHOFERETAL2007 CIVA: Panoramic and microscopic imaging system - - - - - - - - - - - - - - - - - - - - - - - - The Cometary Infrared and Visible Analiser (CIVA) is an integrated set of imaging instruments, designed to characterize the landing and sampling site, the 360 deg panorama as seen from the Rosetta Lander, all samples collected and delivered by the Drill Sample and Distribution System, and the stratigraphy within the boreholes. It is constituted by a panoramic stereo camera (CIVA-P), and a microscope coupled to an IR spectrometer (CIVA-M). CIVA is sharing a common Imaging Main Electronics (CIVA/ROLIS/IME) with ROLIS. CIVA-P will characterize the landing site, from the landing legs to the local horizon. The camera is composed of 6 identical micro-cameras, mounted of the Lander sides, with their optical axes separated by 60 deg. In addition, stereoscopic capability is provided by one additional micro- camera, identical to and co-aligned with one of the panoramic micro- camera, with its optical axis 10 cm apart. CIVA-M combines in separated boxes, two ultra-compact and miniaturized channels, one visible microscope CIVA-M/V and one IR spectrometer CIVA-M/I, to characterize, by non-destructive analyses, the texture, albedo, mineralogical and molecular composition of each of the samples collected and distributed by the Drill Sample and Distribution System. Instrument References: BIBRINGETAL2007A CONSERT: Radio sounding, nucleus tomography - - - - - - - - - - - - - - - - - - - - - - The Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) is a complex experiment that performs tomography of the comet nucleus revealing its internal structure. CONSERT operates as a time domain transponder between the Lander, on the comet surface and the Orbiter orbiting the comet. A radio signal passes from the orbiting component of the instrument to the component on the comet surface and is then immediately transmitted back to its source, the idea being to establish a radio link that passes through the comet nucleus. The varying propagation delay as the radio waves pass through different parts of the cometary nucleus is used to determine the dielectric properties of the nuclear material. Many properties of the comet nucleus is examined as its overall structural homogeneity, the average size of the sub-structures (Cometesimals) and the number and thickness of the various layers beneath the surface. Instrument References: KOFMANETAL2007 COSAC: Evolved gas analyser - elemental and molecular composition - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The COmetary SAmpling and Composition experiment COSAC is one of the two evolved gas analysers (EGAs) on board the Rosetta-Lander. Whereas the other EGA, Ptolemy, aims mainly at accurately measuring isotopic ratios of light elements, the COSAC is specialised on detection and identification of complex organic molecules. The instrument can be described as an effort to analyse in situ, mainly with respect to the composition of the volatile fraction, cometary matter nearly as well and accurately as could be done in a laboratory on Earth. Due to the Rosetta Lander rotatability, the instrument can conduct analyses and investigations at different spots of the landing site and, aided by the drill, take samples for analysis from a depth up to at least 0.2 m. Instrument References: GOESMANNETAL2007 PTOLEMY: Evolved gas analyser - isotopic composition - - - - - - - - - - - - - - - - - - - - - - - - - - - The size of a small shoe box and weighing less than 5 kg, Ptolemy uses gas chromatography / mass spectrometry (GCMS) techniques to investigate the comet surface & subsurface. The instrument concept is termed MODULUS which is taken to mean Methods Of Determining and Understanding Light elements from Unequivocal Stable isotope compositions. The scientific goal of the PTOLEMY is to understand the geochemistry of light elements, such as hydrogen, carbon, nitrogen and oxygen, by determining their nature, distribution and stable isotopic compositions. Instrument References: WRIGHTETAL2007 MUPUS: Measurements of surface and subsurface properties - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The Multi-Purpose Sensor Experiment actually consists of four parts: 1. A penetrator, approximately 40 cm long, is hammered into the ground about 1m apart from the Lander for measuring during the penetration process the mechanical strength of the material by means of a depth sensor and a densitometer. The penetrator is equipped with a series of temperature sensors and heaters for determining the temperature as a function of depth and insolation. 2. An accelerometer and a temperature sensor accommodated in the harpoon(s) 3. A four-channel infrared radiometer measures surface temperatures in the vicinity of the Lander. Density of the nearsurface (down to 20cm) material is determined by measuring the absorption of gamma-rays emitted from a radioactive isotope mounted at the tip of the penetrator. Instrument References: SPOHNETAL2007 ROLIS: Descent & Down-Looking Imaging - - - - - - - - - - - - - - - - - - - The ROLIS Camera (Rosetta Lander Imaging System) delivered first close-ups of the environment of the landing place of comet 67P/Churyumov-Gerasimenko during the descent. After landing ROLIS made high-resolved investigations to study the structure (morphology) and mineralogy of the surface. Instrument References: MOTTOLAETAL2007 ROMAP: Magnetometer and plasma monitor - - - - - - - - - - - - - - - - - - - - The Rosetta Lander Magnetometer and Plasma Monitor ROMAP is a multi- sensor experiment. The magnetic field is measured with a fluxgate magnetometer. An electrostatic analyzer with integrated Faraday cup measures ions and electrons. The local pressure is measured with Pirani and Penning sensors. The sensors are situated on a short boom. The deployment on the surface of a cometary nucleus demanded the development of a special digital magnetometer of little weight and small power requirements. For the first time a magnetic sensor is operated from within a plasma sensor. A prototype of the magnetometer, named SPRUTMAG, was flown on space station MIR. Instrument References: AUSTERETAL2007 SD2: Sampling, Drilling and Distribution Subsystem - - - - - - - - - - - - - - - - - - - - - - - - - - The Rosetta-Lander is equipped with a Sample Drill & Distribution (SD2) subsystem which is in charge to collect cometary surface samples at given depth and distribute them to the following instruments: CIVA-M (microscope (MS) & Infrared Spectrometer (IS)), the ovens, serving COSAC and PTOLEMY. Comet sample from pre-determined and/or known (measured) depth are collected and transported by SD2 to well defined locations: * MS & IS viewing place * ovens for high temperature (800 deg C) heating * ovens for medium temperature (130 deg C) heating. * ovens with a window, where samples can be investigated by CIVA-M The sampling, drilling and distribution (SD2) subsystem provides microscopes and advanced gas analysers with samples collected at different depths below the surface of the comet. Specifically SD2 can bore up to 250 mm into the surface of the comet and collect samples of material at predetermined and/or known depths. It then transports each sample to a carousel which feeds samples to different instrument stations: a spectrometer, a volume check plug, ovens for high and medium temperatures and a cleaning station. SD2 is accommodated on the flat ground-plate of the Rosetta, where it is exposed to the cometary environment. Instrument References: ERCOLIFINZIETAL2007 SESAME: Surface electrical, acoustic and dust impact monitoring - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The SESAME (Surface Electrical, Seismic and Acoustic Monitoring Experiments) electronics board and the integration of the components are managed by the German Aerospace Center (DLR), Institute of Space Simulation, Cologne. The results of SESAME help in understanding how comets, have formed and thus, how the solar system, including the Earth, was born. Instrument References: SEIDENSTICKERETA2007 GROUND SEGMENT ===================================================================== This section summarizes the roles and responsibilities for the Rosetta Ground Segment. The primary responsibility for developing the payload operations strategy for the Rosetta Scientific Mission is the Rosetta Science Working Team. The Rosetta Science Working Team (SWT) monitors and advises on all aspects of Rosetta which affect its scientific performance. Rosetta Ground Segment ----------------------- The Rosetta ground segment consists of two major elements: the Rosetta Mission Operations Centre (RMOC) and the Rosetta Science Ground Segment (RSGS). Rosetta Science Ground Segment - - - - - - - - - - - - - - - - - - The Rosetta Science Ground Segment (RSGS) is located at the European Space Astronomy Centre (ESAC) in Spain. The main task is to support the Rosetta Project Scientist in the planning of the science operations schedule and in the generation of coordinated operational sequences, the payload command sequences for all Rosetta instruments and their onward transmission to the Rosetta Mission Operations Centre (RMOC). In addition, the RSGS prepares the trajectory during the comet escort phase. Rosetta Mission Operations Center - - - - - - - - - - - - - - - - - - The Rosetta Mission Operations Center (RMOC) is located at the European Space Operations Center (ESOC) in Darmstadt, Germany. The RMOC is responsible for the Spacecraft operations and all real time contacts with the spacecraft and payload, the overall mission planning, flight dynamics and spacecraft and payload data distribution. Rosetta Lander Ground Segment ------------------------------ The Rosetta Lander Ground Segment (RLGS) is made up of two operational teams. When CNES joined the DLR consortium for developing the Lander, it was decided to divide the RLGS into 2 centers (see Lander Project Plan RL-PL-DLR-97002). These teams are responsible for the success of the Lander operations, to ensure that the Lander performs the science with regards to its status, and to give the data to the PIs and suppliers. Lander Control Center - - - - - - - - - - - - The Lander Control Center (LCC), located at DLR/MUSC in Koeln (Germany), in charge of Rosetta Lander operations during the flight segment definition, design, realization, assembly and tests. Science Operations and Navigation Center - - - - - - - - - - - - - - - - - - - - - The Science Operations and Navigation Center is under CNES responsibility, located in Toulouse (France). It is responsible for the navigation and mission analysis aspects, including separation, landing and descent strategies and generation of the scientific sequences. Rosetta Scientific Data Archive -------------------------------- All scientific data obtained during the full mission duration remains proprietary of the PI teams and the Lander teams for a maximum period of 6 months after they have been received from ESOC. After this period, the scientific data products from the mission have to be submitted to RSOC in a reduced and calibrated form such that they can be used by the scientific community. The Archive Scientist prepares the release of Rosetta Scientific Data Archive after reception from the individual Rosetta instruments and after the 6 months proprietary period. Acronyms -------- For more acronyms refer to Rosetta Project Glossary RO-EST-LI-5012 ATTC Absolute Time Telecommand AU Astronomical Unit CA Closest Approach CAP Comet Acquisition Point CAT Close Approach Trajectory CNES Centre National dEtudes Spatiales COP Close Observation Phase DLR German Aerospace Center DSM Deep Space Manoeuver ESA European Space Agency ESAC European Space Astronomy Centre ESOC European Space Operations Center ESTEC European Space Research and Technology Center EUV Extreme UltraViolet FAT Far approach trajectory FSS First Science Sequence FUV Far UltraViolet GCMS Gas Chromatography / Mass Spectrometry GMP Global Mapping Phase HGA High Gain Antenna HgCdTe Mercury Cadmium Telluride HIGH High Activity Phase (Escort Phase) HK HouseKeeping IRAS InfraRed Astronomical Satellite IRFPA Infrared Focal Plane Array IS Infrared Spectrometer LCC Lander Control Center LDL Long Debye Length LEOP Launch and Early Orbit Phase LOW Low Activity Phase (Escort Phase) LTE Local Thermodynamic Equilibrium MINC Moderate Increase Phase (Escort Phase) MGA Medium Gain Antenna MLI Multi Layer Insulation MS Microscope NNO New Norcia ground station OCM Orbit Correction Manoeuvres OIP Orbit Insertion Point PI Principal Investigator P/L PayLoad PC Payload Checkout PDHC Pre Delivery Calib Science PHC Post Hibernation Commissioning PRL Prelanding RBD Rebounds RF Radio Frequency RMOC Rosetta Mission Operations Center RLGS Rosetta Lander Ground Segment RL Rosetta Lander RO Rosetta Orbiter RSGS Rosetta Science Ground Segment RVM Rendez-vous Manoeuver S/C SpaceCraft SDL Separation Descent and Landing SINC Sharp Increase Phase (Escort Phase) SONC Science Operations and Navigation Center SSP Surface Science Package STR Star TRacker SWT Science Working Team TGM Transition to global mapping
Creator Contact Harald Jeszenszky
Date Published 2018-08-17T00:00:00Z
Publisher And Registrant European Space Agency
Credit Guidelines European Space Agency, Harald Jeszenszky, 2018, 'RO-C-MIDAS-5-PRL-TO-EXT3', V2.0, European Space Agency, https://doi.org/10.5270/esa-psqz7ro