A dataset provided by the European Space Agency

Proposal ID 076319
Title Investigating Magnetic Activity in the Lowest Mass Pre-Main Sequence Stars
Download Data Associated to the proposal

https://nxsa.esac.esa.int/nxsa-sl/servlet/data-action-aio?obsno=0763190201

DOI https://doi.org/10.5270/esa-ed50t83
Principal Investigator, PI Dr David Principe
Abstract The spectral type boundary that determines which very low-mass objects willeventually become M stars, vs. brown dwarfs, remains poorly constrained duringpre-main sequence evolution. High-energy observations of pre-main sequence Mstars offer a means to probe chromospheric and coronal activity due to stellarmagnetic activity, so as to help determine this boundary. However, even though amajority of stars in the solar neighborhood are of mid- to late-M type, theX-ray activity of such stars remain essentially unexplored for the important agerange 10-100 Myr. We propose to use XMM-Newton to observe 9 nearby (Dvirgul50 pc),young (age 10-100 Myr) stars of type M4-M9, to investigate the potentialdecrease in UV and X-ray luminosities for very low-mass stars at this age.
Publications
Instrument EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage 2015-08-29T20:39:49Z/2015-08-30T02:46:28Z
Version 17.56_20190403_1200
Mission Description The European Space Agencys (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESAs second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations. Since Earths atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
Creator Contact https://www.cosmos.esa.int/web/xmm-newton/xmm-newton-helpdesk
Date Published 2016-09-16T22:00:00Z
Keywords "xray luminosities", "myr stars", "xray activity", "XMM-Newton", "xmm newton", "investigating magnetic activity", "stellar magnetic activity", "poorly constrained", "potential decrease", "low mass stars", "age range", "XMM", "coronal activity", "low mass objects", "probe chromospheric", "spectral type boundary", "pre main sequence", "type m4 m9", "M4", "solar neighborhood", "brown dwarf"
Publisher And Registrant European Space Agency
Credit Guidelines European Space Agency, Dr David Principe, 2016, 'Investigating Magnetic Activity in the Lowest Mass Pre-Main Sequence Stars', 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-ed50t83