AGN feedback is a key ingredient in modern galaxy formation models, invoked tosuppress star formation (SF) activity in early-type galaxies at recent epochs.However, the physics of this process is not well understood and poorlyconstrained by observations. Compelling observational evidence for its mereexistence has been missing so far. We identified a sample of early-type galaxiesin SDSS that define an AGN feedback sequence transitioning from SF via AGN toquiescence. We propose observations on a sub-sample of 18 targets characterizingthe AGN feedback process. These data will provide critical information about thepresence and significance of black hole activity in this sample, providingdeeper insight into the physics of AGN feedback in early-type galaxies.
A Comparison of X-Ray Photon Indices among the Narrow- and Broad-line Seyfert 1 Galaxies |Ojha, Vineet, Chand, Hum, et al. | ApJ | 896-95 | 2020 | 2020ApJ...896...95O | http://ui.adsabs.harvard.edu/#abs/2020ApJ...896...95O
A Luminous X-Ray Transient in SDSS J143359.16+400636.0: A Likely Tidal Disruption Event |Brightman, Murray, Ward, Charlotte, et al. | ApJ | 909-102 | 2021 | 2021ApJ...909..102B | http://ui.adsabs.harvard.edu/#abs/2021ApJ...909..102B
The XMM-Newton Line Emission Analysis Program (X-LEAP). I. Emission-line Survey of O VII, O VIII, and Fe L-shell Transitions |Pan, Zeyang, Qu, Zhijie, et al. | ApJS | 271-62 | 2024 | 2024ApJS..271...62P | http://ui.adsabs.harvard.edu/#abs/2024ApJS..271...62P
Robust constraints on feebly interacting particles using XMM-Newton |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-L101305 | 2024 | 2024PhRvD.109j1305L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j1305L
Multimessenger search for electrophilic feebly interacting particles from supernovae |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-103028 | 2024 | 2024PhRvD.109j3028L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j3028L
Importance of Cosmic-Ray Propagation on Sub-GeV Dark Matter Constraints |De la Torre Luque, Pedro, Balaji, Shyam, | ApJ | 968-46 | 2024 | 2024ApJ...968...46D | http://ui.adsabs.harvard.edu/#abs/2024ApJ...968...46D
Instrument
EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage
2012-06-25T11:17:49Z/2013-04-22T19:47:35Z
Version
17.56_20190403_1200
Mission Description
The European Space Agencys (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESAs second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations. Since Earths atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
European Space Agency, Dr Francisco J. Carrera, 2014, 'Probing AGN feedback in early-type galaxies', 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-hkt8ill