A dataset provided by the European Space Agency

Name 069211
Title Understanding Coronal Super-Saturation
URL

https://nxsa.esac.esa.int/nxsa-sl/servlet/data-action-aio?obsno=0692110101
https://nxsa.esac.esa.int/nxsa-sl/servlet/data-action-aio?obsno=0692110201
https://nxsa.esac.esa.int/nxsa-sl/servlet/data-action-aio?obsno=0692110301
https://nxsa.esac.esa.int/nxsa-sl/servlet/data-action-aio?obsno=0692110401
https://nxsa.esac.esa.int/nxsa-sl/servlet/data-action-aio?obsno=0692110501

DOI https://doi.org/10.5270/esa-wif9d1z
Author Prof Rob Jeffries
Description Despite 15 years since discovery, the cause of super-saturation - the reduction
of coronal X-ray activity in very fast-rotating G- and K-stars - is still not
resolved, yet must provide important clues to the behaviour of magnetic dynamos,
B-field topology, and angular momentum loss at extreme rotation rates. By
measuring the X-ray activity of several small M-dwarfs, rotating at twice the
rate of previously studied objects, we will determine which parameter (rotation
period, Rossby number or Keplerian co-rotation radius) best predicts
super-saturation and hence test whether centrifugal stripping of the outer
corona is a viable model.
Publication No observations found associated with the current proposal
Instrument EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage 2012-05-11T18:49:27Z/2012-08-27T14:19:54Z
Version 17.56_20190403_1200
Mission Description The European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESA's second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations.
Since Earth's atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
Creator Contact https://www.cosmos.esa.int/web/xmm-newton/xmm-newton-helpdesk
Date Published 2013-09-08T00:00:00Z
Publisher And Registrant European Space Agency
Credit Guidelines European Space Agency, Prof Rob Jeffries, 2013, 069211, 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-wif9d1z