The deep minimum state of AGNs is characterized by a strongly suppressed or evenabsent primary continuum. As the continuum disappears weak spectral featureslike relativistic iron lines or narrow soft X-ray emission lines from ionisedplasmas become highly significant and their parameters can be determined.Therefore deep minimum states offer unique possibilities to investigate indetail the physics of the reprocessed components in AGN, including the immediatevicinity of the supermassive black hole. Applying our experience (several deepminimum observations) we propose two triggered 10ks XMM snapshot, one 80ks XMMfollow-up and one HST (2 orbit) observation of an AGN in deep minimum state. Wewill identify deep minimum states based on Swift and XMM-Newton slew observations.
Instrument
EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage
2013-07-20T17:03:24Z/2013-08-12T01:48:44Z
Version
17.56_20190403_1200
Mission Description
The European Space Agencys (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESAs second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations. Since Earths atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
European Space Agency, Dr Norbert Schartel, 2014, 'Catching AGN in Deep Minimum States to Unveil Their Core Environment', 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-tsm8bxy