Studies of galaxy clusters are important for both cosmology and the formation ofbaryonic structures. An important relation in cluster science is the f_gas - Mrelation. However, the cluster samples used to constrain this relation are X-rayselected and the current XMM and Chandra archives are also heavily biased toX-ray selected clusters. To address this important bias, we construct a sampleof 11 most massive clusters from the SDSS-C4 cluster catalog. Six of them havebeen observed by XMM or Chandra but they are all X-ray luminous, while the fiveunobserved clusters are X-ray faint. We propose to observe these five clustersto search for X-ray faint, massive cluster, with potentially importantimplications on the cluster mass - proxy relations.
A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2 |Pons, E., Watson, M. G., | A&A | 594-72 | 2016 | 2016A&A...594A..72P | http://ui.adsabs.harvard.edu/#abs/2016A&A...594A..72P
The XMM-Newton Line Emission Analysis Program (X-LEAP). I. Emission-line Survey of O VII, O VIII, and Fe L-shell Transitions |Pan, Zeyang, Qu, Zhijie, et al. | ApJS | 271-62 | 2024 | 2024ApJS..271...62P | http://ui.adsabs.harvard.edu/#abs/2024ApJS..271...62P
Robust constraints on feebly interacting particles using XMM-Newton |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-L101305 | 2024 | 2024PhRvD.109j1305L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j1305L
Multimessenger search for electrophilic feebly interacting particles from supernovae |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-103028 | 2024 | 2024PhRvD.109j3028L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j3028L
Importance of Cosmic-Ray Propagation on Sub-GeV Dark Matter Constraints |De la Torre Luque, Pedro, Balaji, Shyam, | ApJ | 968-46 | 2024 | 2024ApJ...968...46D | http://ui.adsabs.harvard.edu/#abs/2024ApJ...968...46D
Instrument
EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage
2011-07-31T01:27:26Z/2011-07-31T06:26:02Z
Version
17.56_20190403_1200
Mission Description
The European Space Agencys (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESAs second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations. Since Earths atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
European Space Agency, Dr Ming Sun, 2012, 'Are massive clusters always X-ray luminousquestionMark', 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-f7e9t0h