Recent spectroscopic observations in the UV band have revealed high velocityoutflows in Narrow Absorption Line (NAL) quasars. Our analysis of exploratoryXMM-Newton observations of NAL quasars indicates that their UV and X-rayproperties connect smoothly to those of BAL quasars. The proposed expansion ofour exploratory sample will allow us to place constraints on correlationsbetween the amount of X-ray absorption and UV properties of the wind to betterunderstand the acceleration mechanism of quasar winds. We will test existingmodels of the nature of NAL quasars. The detected X-ray brightest objects fromthe proposed survey will be followed up with deeper observations to constrainthe kinematic and ionization properties of the absorbers and ultimately constrain their mass outflow rates.
Publications
The cosmological analysis of X-ray cluster surveys - II. Application of the CR-HR method to the XMM archive |Clerc, N., Sadibekova, T., et al. | MNRAS | 423-3561 | 2012 | 2012MNRAS.423.3561C | http://ui.adsabs.harvard.edu/#abs/2012MNRAS.423.3561C
SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV |Clerc, N., Merloni, A., et al. | MNRAS | 463-4490 | 2016 | 2016MNRAS.463.4490C | http://ui.adsabs.harvard.edu/#abs/2016MNRAS.463.4490C
X-ray properties of the X-CLASS-redMaPPer galaxy cluster sample: the luminosity-temperature relation |Molham, Mona, Clerc, Nicolas, et al. | MNRAS | 494-161 | 2020 | 2020MNRAS.494..161M | http://ui.adsabs.harvard.edu/#abs/2020MNRAS.494..161M
Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks |Kosiba, Matej, Lieu, Maggie, et al. | MNRAS | 496-4141 | 2020 | 2020MNRAS.496.4141K | http://ui.adsabs.harvard.edu/#abs/2020MNRAS.496.4141K
SPIDERS: overview of the X-ray galaxy cluster follow-up and the final spectroscopic data release |Clerc, N., Kirkpatrick, C. C., et al. | MNRAS | 497-3976 | 2020 | 2020MNRAS.497.3976C | http://ui.adsabs.harvard.edu/#abs/2020MNRAS.497.3976C
The XMM-Newton Line Emission Analysis Program (X-LEAP). I. Emission-line Survey of O VII, O VIII, and Fe L-shell Transitions |Pan, Zeyang, Qu, Zhijie, et al. | ApJS | 271-62 | 2024 | 2024ApJS..271...62P | http://ui.adsabs.harvard.edu/#abs/2024ApJS..271...62P
Robust constraints on feebly interacting particles using XMM-Newton |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-L101305 | 2024 | 2024PhRvD.109j1305L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j1305L
Multimessenger search for electrophilic feebly interacting particles from supernovae |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-103028 | 2024 | 2024PhRvD.109j3028L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j3028L
Importance of Cosmic-Ray Propagation on Sub-GeV Dark Matter Constraints |De la Torre Luque, Pedro, Balaji, Shyam, | ApJ | 968-46 | 2024 | 2024ApJ...968...46D | http://ui.adsabs.harvard.edu/#abs/2024ApJ...968...46D
Instrument
EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage
2009-03-28T19:15:35Z/2009-04-29T00:58:04Z
Version
17.56_20190403_1200
Mission Description
The European Space Agencys (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESAs second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations. Since Earths atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
European Space Agency, Dr George Chartas, 2010, 'A SURVEY OF NAL QUASARS WITH HIGH VELOCITY OUTFLOWS', 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-gy9xdas