A small group of early Be stars (the class of Gamma Cas analogs) exhibit lowluminosity hard X-ray emission with Log(Lx) virgul 32-33 erg/s. Both a white dwarfaccreting from the circumstellar disc or magnetic interaction between thephotosphere and the disc can explain the unusually hard X-ray emission. Thetarget of the proposal, HD 110432, is after Gamma Cas itself, the X-raybrightest member of this group and furthermore displays more markedcharacteristics of this class than the prototype. We propose to obtain a RGSspectrum of HD 110432 in order to constrain the X-ray emission mechanism usingemission line disgnostics, investigate the effect of a different discinclination, search for abundances anomalies and look for stable periodicities.
Publications
The XMM Cluster Survey: optical analysis methodology and the first data release |Mehrtens, Nicola, Romer, A. Kathy, et al. | MNRAS | 423-1024 | 2012 | 2012MNRAS.423.1024M | http://ui.adsabs.harvard.edu/#abs/2012MNRAS.423.1024M
Characterization of the X-Ray Light Curve of the gamma Cas-like B1e Star HD 110432 |Smith, Myron A., Lopes de Oliveira, Raimundo, | ApJ | 755-64 | 2012 | 2012ApJ...755...64S | http://ui.adsabs.harvard.edu/#abs/2012ApJ...755...64S
Sunyaev-Zel.dovich effect or not? Detecting the main foreground effect of most galaxy clusters |Xiao, Weike, Chen, Chen, et al. | MNRAS | 432-41 | 2013 | 2013MNRAS.432L..41X | http://ui.adsabs.harvard.edu/#abs/2013MNRAS.432L..41X
Chandra Follow-up of the SDSS DR8 Redmapper Catalog Using the MATCha Pipeline |Hollowood, Devon L., Jeltema, Tesla, et al. | ApJS | 244-22 | 2019 | 2019ApJS..244...22H | http://ui.adsabs.harvard.edu/#abs/2019ApJS..244...22H
Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters |Palmese, A., Annis, J., et al. | MNRAS | 493-4591 | 2020 | 2020MNRAS.493.4591P | http://ui.adsabs.harvard.edu/#abs/2020MNRAS.493.4591P
A possible nonthermal X-ray emission from \\u03b3 Cas analogues stars |Ryspaeva, Elizaveta B., Kholtygin, Alexander F., | OAst | 30-132 | 2021 | 2021OAst...30..132R | http://ui.adsabs.harvard.edu/#abs/2021OAst...30..132R
Robust constraints on feebly interacting particles using XMM-Newton |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-L101305 | 2024 | 2024PhRvD.109j1305L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j1305L
Multimessenger search for electrophilic feebly interacting particles from supernovae |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-103028 | 2024 | 2024PhRvD.109j3028L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j3028L
Importance of Cosmic-Ray Propagation on Sub-GeV Dark Matter Constraints |De la Torre Luque, Pedro, Balaji, Shyam, | ApJ | 968-46 | 2024 | 2024ApJ...968...46D | http://ui.adsabs.harvard.edu/#abs/2024ApJ...968...46D
Instrument
EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage
2007-09-04T14:55:16Z/2007-09-05T16:14:46Z
Version
17.56_20190403_1200
Mission Description
The European Space Agencys (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESAs second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations. Since Earths atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
European Space Agency, Dr Christian Motch, 2008, 'Origin of the hard X-ray emission in Gamma Cas analogs: HD 110432', 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-jlxxsng