We propose a mini-survey of unidentified TeV sources having young Vela-likepulsars with known X-ray PWNe as their neighbors. Although these pulsars show10.-15. offsets from the center of the TeV brightness distribution, they arelikely to be connected to the nearby TeV sources through a faint asymmetricX-ray nebulae formed as a result of the interaction between the SNR reverseshock and the pulsar wind. To test this, we propose to obtain deep X-ray imagesof several crushed PWN candidates to search for correlations between the X-rayand TeV emission. Confirming that the X-ray PWNe are preferentially extendedtoward the neighboring TeV sources will establish the viability of the crushedPWN model and reveal the nature of the currently unidentified TeV sources.
Publications
The XMM Cluster Survey: optical analysis methodology and the first data release |Mehrtens, Nicola, Romer, A. Kathy, et al. | MNRAS | 423-1024 | 2012 | 2012MNRAS.423.1024M | http://ui.adsabs.harvard.edu/#abs/2012MNRAS.423.1024M
Sunyaev-Zel.dovich effect or not? Detecting the main foreground effect of most galaxy clusters |Xiao, Weike, Chen, Chen, et al. | MNRAS | 432-41 | 2013 | 2013MNRAS.432L..41X | http://ui.adsabs.harvard.edu/#abs/2013MNRAS.432L..41X
Chandra Follow-up of the SDSS DR8 Redmapper Catalog Using the MATCha Pipeline |Hollowood, Devon L., Jeltema, Tesla, et al. | ApJS | 244-22 | 2019 | 2019ApJS..244...22H | http://ui.adsabs.harvard.edu/#abs/2019ApJS..244...22H
Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters |Palmese, A., Annis, J., et al. | MNRAS | 493-4591 | 2020 | 2020MNRAS.493.4591P | http://ui.adsabs.harvard.edu/#abs/2020MNRAS.493.4591P
Robust constraints on feebly interacting particles using XMM-Newton |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-L101305 | 2024 | 2024PhRvD.109j1305L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j1305L
Multimessenger search for electrophilic feebly interacting particles from supernovae |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-103028 | 2024 | 2024PhRvD.109j3028L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j3028L
Importance of Cosmic-Ray Propagation on Sub-GeV Dark Matter Constraints |De la Torre Luque, Pedro, Balaji, Shyam, | ApJ | 968-46 | 2024 | 2024ApJ...968...46D | http://ui.adsabs.harvard.edu/#abs/2024ApJ...968...46D
Instrument
EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage
2007-10-01T23:56:03Z/2007-10-09T04:29:23Z
Version
17.56_20190403_1200
Mission Description
The European Space Agencys (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESAs second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations. Since Earths atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
European Space Agency, Dr Oleg Kargaltsev, 2008, 'Search for crushed plerions: TeV to X-ray connection', 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-jift5fn