Many, if not all, Herbig Ae/Be stars (HAeBes) are known to be strong X-rayemitters, however, the origin of the observed X-ray emission is unclear. In afew cases it can be attributed to unseen companions, but in the case of theHAeBe star HD 163296 binarity can be excluded. CCD spectra from imagingobservations of HD 163296 can be well fitted by a single, cool (T=0.5 keV)thermal model, very much in contrast to typical active stars. We propose toobtain a high SNR, high spectral resolution grating spectrum in order to carryout direct plasma line diagnostics already successfully used in classical TTauri stars to physically characterise the X-ray emission regions in HD 163296and to solve the mystery of the X-ray emission mechanism in HAeBes.
Publications
The enigmatic X-rays from the Herbig star HD 163296: Jet, accretion, or corona? |Gunther, H. M., Schmitt, J. H. M. M., | A&A | 494-1041 | 2009 | 2009A&A...494.1041G | http://ui.adsabs.harvard.edu/#abs/2009A&A...494.1041G
The XMM Cluster Survey: optical analysis methodology and the first data release |Mehrtens, Nicola, Romer, A. Kathy, et al. | MNRAS | 423-1024 | 2012 | 2012MNRAS.423.1024M | http://ui.adsabs.harvard.edu/#abs/2012MNRAS.423.1024M
Sunyaev-Zel.dovich effect or not? Detecting the main foreground effect of most galaxy clusters |Xiao, Weike, Chen, Chen, et al. | MNRAS | 432-41 | 2013 | 2013MNRAS.432L..41X | http://ui.adsabs.harvard.edu/#abs/2013MNRAS.432L..41X
Chandra Follow-up of the SDSS DR8 Redmapper Catalog Using the MATCha Pipeline |Hollowood, Devon L., Jeltema, Tesla, et al. | ApJS | 244-22 | 2019 | 2019ApJS..244...22H | http://ui.adsabs.harvard.edu/#abs/2019ApJS..244...22H
Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters |Palmese, A., Annis, J., et al. | MNRAS | 493-4591 | 2020 | 2020MNRAS.493.4591P | http://ui.adsabs.harvard.edu/#abs/2020MNRAS.493.4591P
Robust constraints on feebly interacting particles using XMM-Newton |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-L101305 | 2024 | 2024PhRvD.109j1305L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j1305L
Multimessenger search for electrophilic feebly interacting particles from supernovae |Luque, Pedro De la Torre, Balaji, Shyam, | PhRvD | 109-103028 | 2024 | 2024PhRvD.109j3028L | http://ui.adsabs.harvard.edu/#abs/2024PhRvD.109j3028L
Importance of Cosmic-Ray Propagation on Sub-GeV Dark Matter Constraints |De la Torre Luque, Pedro, Balaji, Shyam, | ApJ | 968-46 | 2024 | 2024ApJ...968...46D | http://ui.adsabs.harvard.edu/#abs/2024ApJ...968...46D
Instrument
EMOS1, EMOS2, EPN, OM, RGS1, RGS2
Temporal Coverage
2007-09-22T00:38:02Z/2007-09-24T13:14:25Z
Version
17.56_20190403_1200
Mission Description
The European Space Agencys (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESAs second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations. Since Earths atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources. The XMM-Newton mission is helping scientists to solve a number of cosmic mysteries, ranging from the enigmatic black holes to the origins of the Universe itself. Observing time on XMM-Newton is being made available to the scientific community, applying for observational periods on a competitive basis.
European Space Agency, Mr Hans Moritz Guenther, 2008, 'Solving the mystery of the X-ray emission from Herbig AeBe stars', 17.56_20190403_1200, European Space Agency, https://doi.org/10.5270/esa-rcab9bv