Description |
Maps of the thermal emission from dust in nearby star-forming regions have revealed an apparent similarity between the mass distributions of dense cores (CMF) and the stellar initial mass function (IMF). However, deriving the mass of a core from measurements of dust emission is not straightforward. The primary difficulty comes from uncertainty in the dust emissivity, and in particular the slope of the dust emissivity at long wavelengths (the emissivity spectral index). Ground-based observations of the continuum emission from cores suffer from atmospheric contamination, so the best way to derive the emissivity spectral index is from space-based observations. Here we propose to use SPIRE-FTS to map the spectral energy distribution (SED) in a sample of dense cores and constrain the emissivity spectral index of the dust emission. These observations will be supplemented with GBT ammonia observations to break the degeneracy between temperature and the emissivity spectral index inherent in SED fits. We will then be able to derive much more accurate core masses, test the similarity between the CMF and the IMF, and search for variations of the dust properties with environmental factors such as temperature and density. |