A dataset provided by the European Space Agency

Name OT1_nwerner_1
Title Understanding the physics of cold gas in the nearby proxies of distant cooling cores
URL

http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342215929&instrument_name=PACS&product_level=LEVEL0&compress=true
http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342216658&instrument_name=PACS&product_level=LEVEL0&compress=true
http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342234992&instrument_name=PACS&product_level=LEVEL0&compress=true
http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342236278&instrument_name=PACS&product_level=LEVEL0&compress=true
http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342236884&instrument_name=PACS&product_level=LEVEL0&compress=true
http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342238157&instrument_name=PACS&product_level=LEVEL0&compress=true
http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342238158&instrument_name=PACS&product_level=LEVEL0&compress=true
http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342238376&instrument_name=PACS&product_level=LEVEL0&compress=true
http://archives.esac.esa.int/hsa/whsa-tap-server/data?retrieval_type=OBSERVATION&observation_id=1342239492&instrument_name=PACS&product_level=LEVEL0&compress=true

DOI https://doi.org/10.5270/esa-tg5mk08
Author werner, n.
Description We propose to observe nine nearby Halpha
and X-ray bright giant elliptical galaxies to study the physical
properties of their coldest gas phases. Recent CO and IR observations
reveal that giant elliptical galaxies contain large amounts of cold dust
and gas. These systems also often exhibit powerful Halpha emission,
but relatively little star formation. These nearby massive galaxies are
the lowest redshift proxies of the more distant cluster cooling cores.
The first goal of the proposed observations is to understand the
physical properties of the coldest gas phases in the nearest, most
massive giant elliptical galaxies and to correlate them with the X-ray
properties of these systems to understand why this cold gas does
not proceed to star-formation. Furthermore, in these galaxies a tight
correlation has been found between the their Bondi accretion rate of
hot gas and the jet power. An important
question, that we seek to answer is: is this correlation so tight
because of a steady accretion of hot gas only, or is there another tight
correlation between the hot and cold gas phases, leading to an
apparent correlation between the Bondi accretion and the jet power?
In order to address these question, we will use Herschel to target the
atomic cooling lines of [CII] and [OI]. The proposed Herschel PACS
observation in combination with existing and upcoming CO, NIR,
optical, UV, X-ray, and radio data, will allow us to test our ideas about
the mixing of the cold and hot gas phases in the nearest, brightest
giant elliptical galaxies and to discriminate between
models of heat input into the cold gas by mixing layers and alternative
models, such as heating by conduction or shock heating from
colliding clouds. In combination with existing and upcoming CO
observations, we will be able to determine the mass of the cold gas
in the c...ores of these giant elliptical galaxies.
This will enable us to look for a possible relation between the hot and
cold gas phases.
Publication The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback . Werner N. et al. . Monthly Notices of the Royal Astronomical Society, Volume 439, Issue 3, p.2291-2306 . 439 . 10.1093\/mnras\/stu006 . 2014MNRAS.439.2291W ,
Instrument PACS_PacsLineSpec_point, PACS_PacsLineSpec_large
Temporal Coverage 2011-03-11T21:26:45Z/2012-02-21T14:54:37Z
Version SPG v14.2.0
Mission Description Herschel was launched on 14 May 2009! It is the fourth 'cornerstone' mission in the ESA science programme. With a 3.5 m Cassegrain telescope it is the largest space telescope ever launched. It is performing photometry and spectroscopy in approximately the 55-671 µm range, bridging the gap between earlier infrared space missions and groundbased facilities.
Creator Contact https://support.cosmos.esa.int/h®erschel/
Date Published 2012-08-21T12:38:36Z
Publisher And Registrant European Space Agency
Credit Guidelines European Space Agency, werner, n., 2012, OT1_nwerner_1, SPG v14.2.0, European Space Agency, https://doi.org/10.5270/esa-tg5mk08