Description |
We propose to conduct a study of the impact of radiative and mechanical stellar feedback on the surrounding medium of a cluster-forming cloud. Outflows and UV radiation from young stars affect the dynamics and the chemistry of the gaseous environment, thereby influencing the star formation process in the cloud. Herschel offers an extraordinary opportunity to observe unique tracers of these important physical and chemical processes. Our observations will mostly consist of unbiased HIFI, PACS, and SPIRE spectral maps of NGC1333, a nearby cloud, that harbors a cluster of protostars, many outflows and a couple of B stars, and it is commonly used as the prototypical cluster to model clustered star formation. These maps will allow us to conduct a study of an unbiased sample of shocks from outflows at different evolutionary stages within one cloud. We will use important shock tracers and coolants that typically cannot be observed from the ground to investigate the chemistry and physics of the outflow phenomenon in order to fully understand their impact on the natal cloud. Our study will provide the most complete estimate of the outflow energy and momentum input budget in a cluster. In addition, we will investigate how stellar UV radiation affect the water abundance, its formation and destruction, and the chemistry of the gaseous environment. Our proposed Herschel observations (and complementary ground-based data) will provide the best estimate of the water mass reservoir for star formation at the scales of the cloud. The resulting data sets for this cluster-forming region will surely provide a long term observational basis against which to test current and future models of cloud chemistry, stellar feedback and shocks. |