Description |
The relationship between planets and debris disks is unclear. On one hand the direct imaging of planets in three systems with prominent debris disks (beta Pic, HR 8799, and Fomalhaut) suggests a direct link between the two phenomena. Indeed, the eccentric shape of the Fomalhaut dust ring is clearly driven by its shepherding planet, whose existence and eccentricity were correctly predicted based on the disk asymmetry. On the other hand, Spitzer surveys fail to find any correlation between cold debris at 10.s of AUs and radial-velocity-detected planets in the inner system. Motivated by Herschel.s advantages over Spitzer, we propose to further explore the planet-debris relationship by observing 67 stars known to have planets. For the 9 targets that are already known to have orbiting debris, we will resolve the disks, determining the location of the dust-producing planetesimals and measuring disk asymmetries that may be induced by neighboring planets. For the remainder of the targets we will search for new debris disks and then look within the overall sample for any correlations with planet properties. |