Description |
We propose to obtain PACS range spectroscopy to measure the amount of water ice and dust evolution in protoplanetary disks located within the virgul1-2 Myr old Taurus, Chamaeleon, and Ophiuchus clouds. Theoretical works show that grain growth and dust settling are critical first steps in forming planets and that the ice content of disks plays an influential role in the coagulation process. However, the amount of dust evolution actually experienced by disks and their real ice content is largely unconstrained. To provide a quantitative link between theory and observations we will target 40 disks, many of which show signs of planet formation as inferred from gaps and holes in their dust distribution. We will use irradiated accretion disk models to do a self-consistent analysis of their spectral energy distributions utilizing multi-wavelength data from Spitzer and Herschel. This study will determine the degree of dust evolution experienced by the disks and their ice abundances which can serve as constraints for theoretical models of disk evolution and planet formation. |