Description |
We propose to quantify dust evolution in protoplanetary disks around low-mass pre-main sequence stars, the precursors of our own Sun. To this end, we will measure grain growth and settling, the first two steps towards planet formation, in disks located within the star-forming clouds of Taurus, Chamaeleon, and Ophiuchus. In addition to studying full disks we will also target objects which are in the process of clearing gaps in their disks, a phenomena which is most likely due to newly formed planets. By combining spectral energy distributions that employ mid-infrared Spitzer and submillimeter Herschel data with spatial brightness distributions obtained with interferometers in the millimeter (SMA, ALMA), we will provide a self-consistent analysis of the amount of dust growth, settling, and clearing in disks, which will also serve as a guide for future disk studies with JWST. The systematic, semi-empirical evidence obtained through this proposed study will provide needed insight and constraints to aid in theoretical modeling of dust evolution and planet formation, bringing us a few steps closer to understanding the origin of our own solar system. |